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Abstract

Background. In demography, and in other social sciences, determining the variables to

be controlled for is usually a major problem when analyzing possible causal relations. Clear

guidelines in the literature are scarce and actual practice is often questionable.

Objectives. A structural modeling approach is presented as a consistent framework for de-

termining a coherent set of guidelines for deciding what variables should be controlled.

Methods. The method is based on a recursive decomposition of the multivariate distribution,

represented by a directed acyclic graph and reflecting the causal mechanism and sub-mechanisms

of the data generating process.

Results. Two rules are developed for determining control variables when studying respec-

tively the direct and the total effects of a cause on an outcome. The rules can easily be applied

in the framework of a causal model based on background knowledge and invariant to changes

of the environment.

Conclusions. Our approach for determining control variables is simpler and more consistent

than the alternative ones based on Pearl’s back-door criterion. It takes into account both

confounders and other immediate causes leading to variations in the distribution of the outcome

variable and possibly being in interaction with the causal variable
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1 Introduction

As stated in the Glossary of Statistical Terms (2014), there are at least three senses of “control” in

statistics: a member of a control group to whom no treatment is given, a controlled experiment, and

to control for a possible confounding variable. According to A. Crossman (2014), a control variable

is a variable whose value is held constant in a research analysis in order to answer four basic kinds

of questions (brackets ours):

1. Is an observed relationship between two variables just a statistical accident? (i.e. is a corre-

lation spurious?)

2. If one variable has a causal effect on another, is this effect a direct one or is it indirect with

other variable intervening?

3. If several variables all have causal effects on the dependent variable, how does the strength of

those effects vary? (and how do several causal variables have a possible combined effect on the

outcome variable?)

4. Does a particular relationship between two variables look the same under various conditions?

Historically, the issue of control is typically associated with experimental practices where ma-

nipulations are performed, for instance in laboratory experiments or in randomized studies. R.A.

Fisher (1935) can be considered the modern theorizer of a tradition that traces back to, at least,

J.S. Mill (1843). In this context, controlling for a variable amounts to holding constant the value of

that variable, e.g. repeating an experiment under different fixed levels of atmospheric pressure. In

non-experimental or observational sciences, such as demography, where controlled experiments are

often impossible or unethical, standard textbooks in the methodology of the social sciences, such

as E. Babbie (2010), R.A. Jones (2000), C. Frankfort-Nachmias and D. Nachmias (2007), or in epi-

demiology, such as K.J. Rothman and S. Greenland (1998), generally recommend controlling for the

variables possibly having an effect on an outcome variable Y , either by intervening, when feasible, or

by conditioning in a statistical model. In a non-experimental context, holding constant the value of

a control variable may be operationalized in two different ways. Either, the data are split according

to different values of the control variable and the characteristics of the different subsamples are

examined, or a model is first specified and the properties of the distributions are examined under

different values of the control variable.

To see how the above recommendations are put into practice in a non-experimental science, a

perusal of some recent articles in demography (see Wunsch, Mouchart, Russo, 2014) shows that,

broadly speaking, in most cases the authors follow the standard recommendations. They include,

based on a literature review, a vector of all known and observable possible determinants X of the

outcome variable Y into a single-equation model and then consider the impact of each of these
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variables on the outcome Y, the other predictor variables being fixed. A distinction is often made

between key explanatory variables and other variables to be controlled for. It is however not often

specified whether those other variables are confounders, mediators, moderators, or independent

covariates, neither is a distinction usually made between individual characteristics and contextual

variables. Moreover, a theoretical framework is frequently developed in order to present the main

research questions and hypotheses, though a full explanatory mechanism is most often absent.

In this sample of articles, no causal ordering of the predictor variables is generally attempted, in

the sense of a structure or mechanism responsible for the outcome variable. All predictor variables

are implicitly considered in this approach as if they were independent from one another (except for

multi-item scales), i.e. as if different structures of association among them had no impact on the

generation of the outcome variable. Some authors do however use some form of similarity analysis

to examine possible groupings among variables, and interactions between variables are sometimes

examined. There are of course exceptions to this common approach and many other exceptions

would be found if the set of texts were enlarged.

The situation seems rather similar in other fields. For example, in organizational research, T. E.

Becker (2005) has shown that among a random sample of articles he examined, published between

2000 and 2002, more than half the articles provided no explanation for including one or more

control variables. Even when justification is provided, often no explanation of the nature of the

relationship between control and outcome variables in offered (Atinc, Simmering and Kroll, 2012).

Actually, following Spector and Brannick (2011), many papers examined used control variables

inappropriately. The present paper focuses on the issue of determining which variables should be

controlled for when identifying the direct or the total effect of a cause in a complex system.

The previous selection of the literature follows to a large extent what H.-P. Blossfeld (2009) has

called the causation as robust dependence approach. In this view, as discussed by D. R. Cox (1992),

a variable X is a plausible cause of another variable Y if the dependence between the two cannot

be eliminated by introducing additional variables in the analysis. The problem with this approach

is that it is impossible to be sure that all relevant variables have been controlled for. Moreover, as

H.-P. Blossfeld stresses, because covariates are often correlated, parameter estimates depend upon

the specific set of variables included in the statistical model.

In order to go beyond this causation via association approach, as D.R. Cox (1992) has called

it, and to be able to answer among others the questions raised by A. Crossman at the beginning

of this section, one needs what H.-P. Blossfeld (2009) has coined a causation as generative process

approach. In other words, one should characterize the properties of the underlying data generating

process, i.e. the mechanism behind the data. More generally, in a perspective of explanation and

policy intervention, as opposed to a purely descriptive point of view, one requires understanding the

plausible mechanism and sub-mechanisms generating the data in a particular context and during
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a specific period of time. This paper, at variance from a concept of causality taken as a primitive

concept represented by a directed graph, makes use of a concept of causality derived from a specific

structural modelling approach and based on the identification of mechanisms and sub-mechanisms.

Russo (2009) emphasizes that assessing the effect of a causal variable on an outcome variable

amounts to assessing the variation that the cause-variable brings about in the conditional distri-

bution of the outcome variable (admittedly, variations in the cause-variables can be observed or

‘provoked’ by manipulation—see Russo (2014)). More specifically, at a somewhat abstract level, the

effect should be measured by the discrepancy, i.e. distance or divergence1, between the conditional

distributions of the outcome variable relative to different values of the causal variable. Typically,

modellers measure the discrepancy between the same characteristics, or parameters, of the two con-

ditional distributions. It will be shown that in complex social systems, controlling is an unescapable

issue when measuring the effect of a cause.

As the justification for inclusion of control variables is very often limited or absent in many

studies (Schjoedt and Bird, 2014), the purpose of this paper is to examine the issue of control in the

perspective of a specific structural modelling of complex social systems of variables and relations,

where there are multiple causes and multiple effects. In particular, this paper shows what are

the relevant variables that have to be controlled for when studying cause-effect relations in social

systems. The present paper does not deal however with methods of data collection and analysis.

The order of exposition is as follows. Section 2 considers the issue of control in a structural

modelling perspective based on a recursive decomposition of a joint distribution standing for an

explicit mechanism or data generating process and represented by a Directed Acyclic Graph (DAG).

Section 3 deals with the simplest case of three variables in a directed network and examines in this

framework the variables that have to be controlled for. We then consider the issue of control in

more complex systems (Section 4). We derive two simple rules for selecting the variables to be

controlled for in the cases of direct and total effects, without having recourse to Pearl’s back-door

criterion (see e.g. Pearl, 2000). We conclude (Section 5) that the real issue at stake is the modelling

strategy, rather than the search for robust statistical associations. The paper is complemented by

an Appendix discussing the non-uniqueness relations between DAG’s and recursive decompositions.

2 Controlling from a structural modelling perspective

In this section, the framework of structural modelling is presented as a strategy for providing an

ordering of variables underlying the recursive decomposition required for attributing causes and

effects and for determining the control variables. In this perspective, a structural model is a statistical

1Roughly speaking, a divergence between distributions shares most of the properties of a distance but does not

satisfy neither the symmetry nor the triangular inequality one.

5



model that provides a stochastic representation of a Data Generating Process (DGP) interpreted

as a global mechanism. In order to understand the functioning of this global mechanism, the latter

is decomposed into an ordered sequence of sub-mechanisms congruent with background knowledge

and endowed with properties of invariance or structural stability (for a discussion, see also Russo,

2014). Causal attribution is then based on such a structural model. Section 2.1 recalls some origins

of structural modelling and Section 2.2 presents its main features.

The structural model, as presented in this paper, is substantially different from that developed

in the literatures on Structural Equation Models (SEM) in econometrics and in social science. In

particular, the approach of this paper is not based on a system of equations, but rather on an

analysis of a multivariate distribution. Moreover, the modelling stage is essentially distribution-

free and the hypotheses of conditional independence are σ-algebraic in nature. The distributional

hypotheses are accordingly introduced only at the estimation stage. More substantially, the usual

SEM approach endeavors at representing causal knowledge while the structural perspective presented

here aims at constructing causal knowledge. Thus the emphasis, in this paper, on mechanisms and

sub-mechanisms, on background knowledge and on structural stability.

2.1 Structural models: origins

The specific approach to structural modeling, as presented in the next section, is grounded on

two main streams, in econometrics on the one hand and in social science on the other hand. In

econometrics, the members of the Cowles Commission, in particular Koopmans (1950) and Hood

and Koopmans (1953), developed a concept of structural model under the motto ‘no measurement

without theory’ (Koopmans 1947). A basic idea was to deduce the statistical implications of a model

derived from economic theory deemed to represent the actual behaviors of economic agents. The

recursivity of a model was shown to facilitate statistical inference. Herman Wold (1949, 1954), among

others, considered that a recursive model is a type of ideal model as long as individual agents tend to

decide on one variable at a time, considering the other relevant variables as predetermined. In this

approach, the ordered structure of explanatory variables is given a priori by economic theory. In

this view, simultaneity of equations was viewed as an effect of incomplete observability, in particular

of time aggregation. Recently, the structural approach in econometrics has known a substantial

revival of interest, in particular within a debate concerning a so-called “a-theoretical econometrics”

(see e.g. Fagiolo, Moneta and Windrum, 2007).

Another origin of structural modelling is rooted in the path analytic methodology developed

by Sewall Wright and in the subsequent causal models for non-experimental research in the social

sciences—from the 1960s and 1970s—of Blalock, Duncan, and Boudon, among others. The purpose

here is to express a correlation between putative causes and effects through a recursive decomposition.

They represented these relations in branching sequential order by an arrow-diagram, a graphic

6



representation taken up later and expanded by Judea Pearl with his Directed Acyclic Graphs (DAG)

approach to causality (see e.g. Pearl, 2000).

2.2 Structural models: a specific approach

The starting point of a structural model is a set of variables X. We consider a statistical model in

the form of a set of probability distributions

M = {P θX θ ∈ Θ} (1)

where θ is a parameter characterising a probability distribution andM represents a set of plausible

hypotheses concerning the data generating process (DGP). Representing the DGP by probability

distributions characterized by a parameter, implies that what is ”explained” by the statistical model

is embodied in the parameter whereas what is not explained is embodied in the stochastic component

of the probability distributions.

We want the model to be “structural”, meaning that the model should specify a plausible struc-

ture of the underlying DGP, relatively to a well-specified population of reference. Mouchart, Russo

and Wunsch (2010) identify three main features of a structural model:

(i) A recursive decomposition of the joint distribution interpretable as a sequence of sub-mechanisms,

reflecting the causal ordering of the variables underlying the putative mechanism.

(ii) Congruence with background information: causal ordering of the variables is usually based on

prior knowledge, including temporal information about the ordering of variables.

(iii) Invariance or stability of the recursive decomposition across changes of the environment.

More specifically, once the vector of variables X is decomposed into an ordered sequence of

p components, namely X = (X1, X2, · · ·Xp) (with p typically much larger than 2), a recursive

decomposition is a systematic marginal-conditional decomposition of the joint distribution of X,

namely:

pX(x | θ) = pXp|X1,X2,···Xp−1
(xp | x1, x2, · · ·xp−1, θp|1,···p−1)

· pXp−1|X1,X2,···Xp−2
(xp−1 | x1, x2, · · ·xp−2, θp−1|1,···p−2) · · ·

· pXj |X1,X2,···Xj−1
(xj | x1, x2, · · ·xj−1, θj|1,···j−1) · · · pX1

(x1 | θ1) (2)

where each θj|1,···j−1 stands for the parameters characterizing the corresponding conditional distri-

bution pXj |X1,X2,···Xj−1
. The whole recursive decomposition is interpreted as a global mechanism

decomposed into an ordered sequence of acting sub-mechanisms. For the sub-mechanisms to act

autonomously, one should also add a condition of mutual independence among the parameters
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θj|1,···j−1, i.e. these parameters should be variation-free in a sampling theory approach or a priori

independent in a bayesian approach; this topic has been considered in Mouchart, Russo and Wunsch

(2010, 2011).

The recursive decomposition is the cornerstone of the explanatory power of a structural model

because it endows the distribution P θX with the interpretation that each component of the decompo-

sition, i.e. the distribution of an outcome variable conditional on its explanatory variables, stands

for one of the sub-mechanisms that compose the joint DGP of X. The recursive decomposition is

built in such a way that the identified sub-mechanisms are interpretable from background knowledge.

The order of the decomposition of X is crucial for the interpretability of the components as sub-

mechanisms. Finally, invariance or stability of the model is required, as a major aim of structural

modelling is to distinguish structural from incidental components of a data generating process.

In general, a recursive decomposition may be represented by a DAG (Pearl 1988). It should

however be noted that the correspondence between DAGs and recursive decompositions is not one-

to-one. The Appendix gives a simple example of a DAG corresponding to 2 different recursive

decompositions that may be contextually different but correspond nevertheless to a same joint

distribution of the variables and to a same specification of variables to be controlled for.

What do we mean by ‘mechanism’? In the words of Illari and Williamson (2012): “A mechanism

for a phenomenon consists of entities and activities organized in such a way that they are responsible

for the phenomenon”. This definition is general enough to be applicable to social contexts too. More

specifically, it is compatible with an interpretation of the recursive decomposition in terms of sub-

mechanisms in a structural model (see for instance Wunsch, Mouchart, Russo (2014)).

In this context, decomposing a global mechanism into a sequence of autonomous sub-mechanisms

is tantamount to disentangling the function of each component in a sequence of sub-mechanisms

operating in a global mechanism. We specifically model systems of relations (rather than simple

one-cause–one-effect relations) because in social science the typical case is multiple causes-multiple

effects complex systems. Thus a recursive decomposition carries explanatory power insofar as it

decomposes a global mechanism into sub-mechanisms in the above sense. In this framework, the

conditioning variables are interpreted as causes within a particular sub-mechanism, in which they

have a specific function or role (see Mouchart and Russo, 2011; Wunsch, Mouchart and Russo, 2014).

Because a structural model, as proposed in this paper, is based on the concepts of mechanism,

sub-mechanisms and functions, a characteristic feature is its ability to identify, in particular, which

variables have a direct effect on each outcome considered and to deduce therefrom which variables

should be controlled for, as we shall see in Sections 3 and 4. The structural approach allows one

not only to evaluate the causes of an outcome but also the effects of a cause on several outcome

variables. In Section 5, we will however discuss some shortcomings and limitations of this approach.
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3 Controlling in the simplest case of 3 variables

For expository purposes, we analyze in depth the three-variable case (X,Y, Z) defined by a system

that has been completely ordered on the basis of a structural model and represented by the Directed

Acyclic Graph (DAG) of Figure 1, or equivalently by a joint distribution decomposed as follows:

pU (u | θ) = pY |Z,X(y | z, x, θY |Z,X) pX|Z(x | z, θX|Z) pZ(z | θZ) (3)

In this equation, the parameter θ represents the characteristics of the joint distribution of the

U = (X,Y, Z) and θZ , θX|Z , θY |X,Z stand for the characteristics of the corresponding distributions.

Z X

Y

-

@
@R

�
�	

Figure 1: 3-variable completely ordered system

In the present paper, the focus is on the analysis of the effects of causes on outcome variables

in saturated and unsaturated models. This is achieved by examining the distributions of variables

considered as outcomes conditionally on their ancestors, i.e. antecedent variables in the causal

sequence. An immediate cause of an outcome is called a parent of this outcome, the latter being

called a child of the cause. The analysis is therefore congruent with the order of the recursive

decomposition.

In this structural modelling approach, the left-hand side of (3) represents an overall mechanism

whereas the three terms on the right-hand side of (3) represent a decomposition of the overall

mechanism into three sub-mechanisms.

The effect of a parent, for instance X or Z, on the outcome variable Y , is called a direct effect.

This corresponds to the final sub-mechanism generating Y and is determined by the conditional

distribution pY |Z,X , i.e. by θY |Z,X representing its characteristics, such as its conditional expectation

and/or variance. Said differently, the direct effect is evaluated from the decomposition pX,Y,Z =

pX,Z pY |Z,X independently of any hypothesis on pX,Z . The effect of a parent, say X, on the outcome

variable Y , evaluated from the conditional distribution pY |X , i.e. neglecting the other parents of

the outcome, in this example Z, will be called a prima facie direct effect. Later on, the effect of a

non-parent ancestor will be called a total effect. It can be due to multiple directed (causal) paths

from the cause to the outcome of interest or to a sole indirect path. These effects will be detailed

under different hypotheses.

In the present Section 3, we examine how different issues of controlling for X or for Z may arise

when evaluating the effects on the outcome variable Y . We show in particular that the status of Z,
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or of X, as a control variable, as defined in the Introduction, depends upon a complete specification

of the model. This section provides an introduction to the complexities of higher-ordered systems.

3.1 The saturated case

Figure 1 and equation (3) represent a saturated case because, from a probabilistic point of view,

equation (3) represents an identity without underlying restrictions, excepting the order of the vari-

ables. Heuristically, the DAG representing a saturated case is such that adding any new directed

arrow would create a cycle in the graph. In this example, Z causes X and (Z,X) cause Y . In this

case, X is a parent of Y whereas Z is both a parent and a non-parent ancestor of Y . Indeed, there

is a direct path Z → Y and an indirect path Z → X → Y from Z to Y .

3.1.1 The effect of X on Y

Graphically, there is only one direct path from X to Y and Z is a confounding variable for the effect

of X on Y , as it is a common cause of both X and Y . For a discussion of the concept of confounding

variable or confounder, see e.g. Bollen (1989) and Wunsch (2007). Variable X is a mediator, or

intermediate variable, on the indirect path from Z to Y . The variable Z appears in two conditional

distributions, or sub-mechanisms, of the right-hand side of (3), namely pY |Z,X and pX|Z .

The direct effect of the variable X on the variable Y can be described by analysing the variations of

the distribution pY |X,Z(y | x, z, θY |X,Z) relatively to different values of X, but this impact depends

in general upon the values of Z. For this reason, the confounding variable Z should be controlled

for. This means that the variation of the distribution pY |X,Z should be examined for different values

of Z.

As the direct effect of X on Y is characterized by the conditional distribution pY |X,Z , it is important

to condition the outcome on both X and Z in order to detect cases with interaction, where the direct

effect of X depends upon the value of Z, as opposed to cases without interaction where the direct

effect of X is not affected by the value of Z. An interaction effect is also called a moderator effect,

especially in the psychological literature ( Baron and Kenny, 1986). An interaction effect cannot

be adequately represented in a DAG. An interaction may be due to an intrinsic non-additivity

of direct effects or to neglecting, in a model, the action of other variables, as might occur when

the action of these variables is unknown to the model builder or when these variables are not

observable. Moreover, detecting an interaction may be a subtle issue because it may depend upon

some analytical features of the model. For instance, if the conditional expectation of Y has the

form exp{α0 + α1X + α2Z}, differentiating the conditional expectation reveals an interaction effect

whereas the log of the conditional expectation is simply additive without interaction.
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The prima facie direct effect of X on Y , captured by the conditional distribution pY |X , may be

viewed as an examination of the consequences of neglecting the confounding variable Z in a causal

analysis. This may be due to deficiency in background knowledge or because the confounder is not

observed. Formally, Figure 2 may be viewed as a result of collapsing the diagram of Figure 1 by

X Y-

Figure 2: 2-variable system

eliminating the variable Z and corresponds to integrating the latent, or neglected, variable Z out of

(3):

pY |X(y | x, θY |X) =

∫
pY |X,Z(y | x, z, θY |X,Z) pX|Z(x | z, θX|Z) pZ(z | θZ) dz∫

pX|Z(x | z, θX|Z) pZ(z | θZ) dz
(4)

pX(x | θX) =

∫
pX|Z(x | z, θX|Z) pZ(z | θZ) dz (5)

and therefore:

θY |X = f1(θY |X,Z , θX|Z , θZ) θX = f2(θX|Z , θZ) (6)

Here, the prima facie direct effect of X on Y is represented by θY |X and is actually a complex

combination of three sub-mechanisms involving θY |X,Z , θX|Z and θZ . Therefore, Figure 2 is a mis-

leading simplification of Figure 1. For instance, for policy purposes it would be wrong to base an

intervention on differentiating, with respect to X, the conditional expectation of (Y | X). Finally,

the difference between the prima facie direct effect and the direct effect may be interpreted as a

supplementary effect of the confounder Z.

As a conclusion, controlling for Z is required for evaluating the direct effect of X but not for the

prima facie direct effect of X. However, the distribution pY |X may be misleading for understanding

the role of X in the sub-mechanism generating Y .

3.1.2 The effect of Z on Y

Graphically, there are two paths from Z to Y , a direct path and an indirect one through the variable

X. In this case, the effect of Z on Y , captured by pY |Z , is usually called the total effect transmitted

here by the direct and indirect paths, or more generally by multiple directed (causal) paths from

cause to outcome. In this example, the total effect and the prima facie direct effect of Z on Y are

identical.

We distinguish a total effect of Z on Y , captured by the conditional distribution pY |Z , and a direct

effect captured by the conditional distribution pY |X,Z . Several remarks are in order. Firstly, the
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conditional distribution pY |Z does not represent a sub-mechanism but is a mixture of several sub-

mechanisms, in this case two:

pY |Z =

∫
pY |X,Z pX|Z dX (7)

Secondly, as for the direct effect of X, the direct effect of Z on Y may be with or without interaction.

Thus the variable X should be controlled for by examining the direct effect of Z for different values

of X. Thirdly, the supplementary effect of Z on Y , generated by the indirect path Z → X → Y and

defined as the difference between the total effect and the direct effect, depends or not upon the value

of X according to whether the direct effect of Z is with or without interaction with X. Take, for

instance, the very simple case where effects are measured by means of conditional expectations in a

gaussian situation where IE (Y | X,Z) = α0 + α1X + α2 Z + α3XZ and IE (Y | Z) = β0 + β1 Z.

In this case, the supplementary effect of Z is β1 − (α2 + α3X) and therefore depends, or not, on

X according to whether α3 is different or equal to 0.

3.2 Unsaturated cases

We now examine situations where Figure 1, or equation (3), has been simplified by introducing

restrictions represented by deleting one of the arrows, corresponding to some form of stochastic

independence.

3.2.1 A first unsaturated case: Y⊥⊥X | Z

In this case, equation(3) simplifies into:

pX,Z,Y = pZ pX|Z pY |Z (8)

and Figure 1 becomes Figure 3.

Z X

Y

-

@@R

Figure 3: A first unsaturated case

The effect of X on Y

Without any further assumption, X and Y would not be independent. Indeed, the association

between X and Y is captured by equation (4) transformed as follows:

pY |X(y | x, θY |X) =

∫
pY |Z(y | z, θY |Z) pX|Z(x | z, θX|Z) pZ(z | θZ) dz∫

pX|Z(x | z, θX|Z) pZ(z | θZ) dz
(9)

reflecting that this association is grounded on the combined action of two sub-mechanisms repre-

sented by pX|Z and pY |Z but disappears however once one conditions on the common cause and
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confounder Z, given that here Y⊥⊥X | Z. The direct effect of X on Y is actually null although X

and Y are not marginally independent.

The effect of Z on Y

Under the hypothesis Y⊥⊥X | Z, the direct effect of Z on Y is captured by the sub-mechanism pY |Z ,

independently of X. The variable X should therefore not be controlled for. If, however, one did

control X by examining the joint distribution of Y and Z for different values of X, namely:

pY,Z|X = xi
= pY |Z pZ|X = xi

(10)

one would find a same distribution pY |Z for each value of xi but, in the case of a discrete variable

X, one would reduce the number of observations in the sub-samples corresponding to each value xi.

3.2.2 A second unsaturated case: Y⊥⊥Z | X

In this case, equation(3) simplifies into:

pX,Z,Y = pZ pX|Z pY |X (11)

and Figure 1 becomes Figure 4.

Z X
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Figure 4: A second unsaturated case

The effect of X on Y

Variable Z is not a confounder anymore and pY |X is obtained directly from the decomposition of

the joint distribution given by (11). In this case, the information on X is sufficient for predicting Y :

adding information on Z would not improve the prediction on Y . Here, the direct effect of X on Y

is correctly described by the characteristics of the conditional distribution pY |X . In this situation,

the direct effect of X is evaluated through θY |X , and the value of Z should not be controlled for as

its effect on Y is mediated by the value of X.

The effect of Z on Y

In this case, there is no direct effect of Z on Y because pY |X,Z = pY |X and the effect of Z on Y

is completely mediated by X. Moreover, for the total effect of Z, the variable X should not be

controlled for because the distribution pY |Z is actually a blending of two sub-mechanisms, namely

pY |Z =

∫
pY |XpX|Z dX (12)

where X is an active random variable.
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3.2.3 A third unsaturated case: Z⊥⊥X.

In this case, equation (3) simplifies into:

pX,Z,Y = pX pZ pY |X,Z (13)

and Figure 1 becomes Figure 5.
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Figure 5: A third unsaturated case

The effect of X or Z on Y

In this case, the roles of X and of Z are perfectly symmetrical. The direct effect of X (or of Z) is

evaluated through the conditional distribution of Y |Z,X and the marginal independence between

Z and X has no bearing on the direct effect of Z or X on Y . Changes in the distribution of Y

are due, in this model, to changes in X and/or in Z. Here Z (or X) is not a confounder for the

relation between X (or Z) and Y ; however, variables X and Z can have an interaction effect on Y ,

meaning that the effect of X on Y depends upon the value of Z, and vice-versa. For this reason, it

is necessary to control for Z (or X) when studying the impact of X (or Z) on the distribution of Y .

As X and Z are independent, the prima facie direct effect of X, given by the conditional distribution

pY |X , becomes:

pY |X(y | x, θY |X) =

∫
pY |Z,X(y | z, x, θY |Z,X) pZ(z | θZ) dz where : (14)

θY |X = f(θY |Z,X , θZ) (15)

A similar relationship holds for pY |Z .

3.3 An overview of the different effects

Taking stock of Sections 3.1 and 3.2, we have distinguished two types of paths: a direct path, e.g.

Z → Y , and an indirect path, e.g. Z → X → Y . We also have distinguished several types of

effects, each one being characterized by a specific conditional distribution, sometimes representing a

structural sub-mechanism and sometimes not. In the saturated case, see Figure 1, one has a direct

effect of a parent characterized by the final sub-mechanism and conditional distribution pY |X,Z , a

total effect of a non-parent ancestor, e.g. characterized by conditional distribution pY |Z , a prima

facie direct effect of a parent, characterized e.g. by conditional distribution pY |Z or pY |X and an

indirect effect defined as the difference between a total and a direct effect of a given parent. Note that
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in this particular saturated case, pY |Z characterized both a total effect and a prima facie direct effect

of Z on Y . The selection of the variables to be controlled for depends upon the complete specification

of the recursive decomposition and upon the type of effect to be considered. In particular, one should

control for the possible impact of confounding and interaction.

3.3.1 A general rule for direct effects

As a general rule, if a variable has a direct effect on an outcome, one should control for, or condition

on, the other variables having a direct effect on this outcome. Only these other variables should be

controlled for. Basing causality analysis on the functioning of sub-mechanisms, and in particular

on the parents of an outcome, we have shown that these control variables are not restricted to

confounders only but also encompass the other parents leading to variations in the distribution of

the outcome variable and possibly being in interaction with the causal variable, at variance from

Pearl (2000).

3.3.2 Measuring direct effects

Taking the case of Figure 1 as an example, the final sub-mechanism of interest is represented by

the conditional distribution pY |X,Z . The direct effect of a variation of a causal variable X, from the

value x to, say, the value x + δ, is to cause a variation in the conditional distribution pY |X,Z and

“controlling for Z” means considering, in the conditional distribution pY |X,Z , a set of fixed values

for Z in a neighborhood of a reference value of X.

Two approaches may be considered for measuring the direct effect of parent X on outcome Y .

A first one evaluates explicitly a difference between the conditional distributions associated with

the values of X, namely x and x + δ. Thus if we write d(k, q) for a discrepancy, i.e. a distance or

divergence, between the distributions k and q, the effect of a variable X on Y controlling for Z may

be measured through d(pY |X=x+δ,Z=z, pY |X=x,Z=z). In general, this is a function of x, z, and δ.

Controlling for Z, for assessing the effect of the variation of X from the value x to the value x+ δ,

may be made by considering a set of possible values of Z, say {z1, z2, · · · , zr}, and interpreting the

corresponding values of d(pY |X=x+δ,Z=zi , pY |X=x,Z=zi).

In a second approach, one may consider that the quantity d(pY |X=x+δ,Z=z, pY |X=x,Z=z) does

not capture the direct effect of interest, and the effect on some characteristics of the distribution

pY |X,Z is preferred. In other words, the direct effect of the variable X is evaluated through the

parameter θY |X,Z of the conditional distribution pY |X,Z . Thus, the effect of X on the conditional

expectation may be evaluated by differentiating the conditional expectation ∂IE [Y |X=x,Z=z]
∂x . As an

example, suppose:

IE [Y | X = x, Z = z] = α0 + α1x+ α2z + α3xz
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where α3 measures an interaction of effects. Then

∂IE [Y | X = x, Z = z]

∂x
= α1 + α3z

showing that this is a case where the effect of X depends upon the value of Z unless α3 = 0. Less

trivially, if the conditional expectation is not linear but additive, i.e. :

IE [Y | X = x, Z = z] = f1(x) + f2(z)

then ∂IE [Y |X=x,Z=z]
∂x = f ′1(x) does not depend on z and is a function of x rather than a constant

parameter. As already mentionned, the analysis of the direct effect is independent of the process

generating the parents of the sub-mechanism of interest, i.e. independent of the dependence or

independence or of a possible causal relation between X and Z. The direct effect of X in Figures 3

and 5 is analyzed exactly in the same way whereas the case of Figure 4 is different because there Z

is not a confounder anymore and is not a parent of Y .

4 Controlling in more complex models

Up to now, we have analyzed the situation of three variables, an exceedingly simple case. Once

we face a more realistic situation, the issue of recursive decomposition usually becomes much more

complex. As an example, Bouckaert and Mouchart (2001) analyze the impact of a drug on a disease

by means of data from a clinical trial. All variables are binary. The first one codes the intake,

or not, of an active product. Two variables code the presence, or not, of two different observable

effects (say, a primary and a secondary effect). For each observable effect, two latent variables code

the presence, or not, of the pharmacological action of the product and of the presence, or not, of a

residual action that could be labelled placebo or nocebo effect. This situation gives rise to 7 binary

variables, three of which are observable and four are latent. Thus a saturated model would involve

27− 1 = 127 variation-free parameters. With three observable variables, only 23− 1 = 7 parameters

would have to be estimated. Imposing more structure on the saturated model is clearly crucial

for obtaining an operational version of the initial model. Based on properties of boolean algebra

(with binary variables) and on contextual knowledge, in this case medical knowledge of the global

recursively decomposed mechanism, the authors end up with a model with 7 identified parameters

that are contextually interpretable because they characterize medically plausible sub-mechanisms.

These features of the modelling strategy made possible to search, in the medical literature, for prior

information on the parameters used as a first stage in a Bayesian inference, as detailed in Bouckaert

and Mouchart (2000).

Using the DAG terminology, the issue of control is raised here in the context of defining and

measuring the effect of an “ancestor” variable (i.e. ancestor-parent in the case of a direct effect or

ancestor-non parent in the case of a total effect), considered as a causing variable, on an outcome
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variable when the global mechanism is complex, i.e. involving more than 3 variables. From a

structural modelling point of view, and its accompanying recursive decomposition, this issue has

two facets. On the one hand, the causing variable may be a parent in the last sub-mechanism of

interest generating the outcome variable conditionally on its parents (the other ancestor variables

being independent of the outcome conditionally on the parents) or may be an ancestor without being

a parent, upstream in the causal chain. On the other hand, when considering the sub-mechanism

where a causing variable of interest is a parent, the effect of that variable also depends upon the

level of the other parents in the case of interaction. Put otherwise, the issue of control is different

when evaluating the effect of a non-parent ancestor on an outcome or when analyzing the effect of

a parent, under the possibility of an interaction of effects of other parents. The following sections

consider direct and total effects in models with more than 3 variables and propose a second general

rule for determining control variables, in the case of evaluating total effects.

4.1 Direct effects in a 4-variable case

4.1.1 A saturated model
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Figure 6: A four-variable saturated case

Figure 6 presents a 4-variable saturated model where Y is an outcome of the direct effect of the

three other variables. The corresponding recursive decomposition can be written as:

pZ,K,X,Y = pZ pK|Z pX|K,Z pY |K,X,Z (16)

Following the general rule given in Section 3.3.1, the direct effect of each of these three variables

on Y requires controlling for the other two variables. Similarly, the direct effect of Z, or of K, on

X, is captured by the conditional distribution pX|K,Z and requires controlling for the other variable,

respectively K and Z.

4.1.2 An unsaturated model

Let us now consider Figure 7, a simplification of Figure 6 obtained by the following independence

conditions:

K⊥⊥X | Z Y⊥⊥Z | K,X
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Figure 7 corresponds to the following recursive decomposition:

pZ,K,X,Y = pZ pK|Z pX|Z pY |K,X (17)

Here the sub-mechanism of interest is represented by pY |K,X ; the direct effect of X (or of K) on Y
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Figure 7: A four-variable unsaturated case

may be analyzed by measuring the effect of X (or of K) on Y for different values of K (or of X)

which has to be controlled for, by application of the general rule for direct effects.

Contrary to Figure 6, Z is not a parent anymore in pY |K,X but is an ancestor non-parent of Y .

The total effect of Z on Y , where a variation of Z will modify the conditional distributions of the

parents (X and K) of Y , may be evaluated through pY |Z where:

pY |Z =

∫ ∫
pY |K,X pK|Z pX|Z dX dK (18)

It should be stressed that θY |Z is, in general, a complicated function of θY |K,X , θK|Z and θX|Z and

that pY |Z does not represent in itself a structural sub-mechanism but only a tool for assessing an

ancestor non-parent effect.

4.2 A 5-variable case with collider

Consider Figure 8, discussed e.g. in Pearl (2012). This figure corresponds to the following recursive

decomposition:

pV,W,Z,X,Y = pV pW pZ|V,W pX|W,Z pY |V,Z,X (19)

under the following independence conditions:

V⊥⊥W X⊥⊥V |W,Z Y⊥⊥W | V,Z,X (20)

Figure 8 may be viewed as an extension of Figure 1 obtained by adding the variables V and W .

Notice, moreover, that, in Figure 1, controlling for Z is sufficient for evaluating the direct effect of

X on Y whereas in Figure 8, it is not sufficient: V should also be controlled for, as an application

of the general rule for selecting the control variables in the case of a direct effect. Evaluating the

direct effect of each of the three parents of Y requires to control both of the other two parents.
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Figure 8: A five-variate case

Controlling only for Z may create a spurious association between V and W (indeed V⊥⊥W does

not imply V⊥⊥W | Z). The reader may like to compare our approach, based on the parents of an

outcome, with that of Greenland, Pearl and Robins (1999) that also provides an analysis of Figure

8 on the basis of Pearl’s back-door criterion. The latter approach leads to controlling for either Z

and V or Z and W in order to avoid the confounding effects of Z (common cause of X and Y )

and of the association between W and V induced by the control for Z. Our structural modeling

approach controls for Z and V because they are parents of Y and takes accordingly care both of the

confounding effects and of possible interaction effects between the causes of Y . Note that controlling

for Z and W would take care of the confounding effects but not of the interaction effect between

the two parents V and Z, at odds with the present approach.

A variable such as Z, being an outcome of two parents V and W , is called a collider in the graph

literature. An interesting example, related to birth defects, can be found in Hernàn et al. (2002).

To illustrate the collider issue, suppose W and V represent respectively exposure to asbestos (W )

and smoking (V ), Z being lung cancer, each variable being binary-coded. Assume that exposure

to asbestos and smoking are independent. Then controlling for Z means examining the conditional

distribution pW,V |Z for different values of Z, e.g. respectively z1 (having lung cancer) and z2 (not

having lung cancer). It is known from the medical literature that, among those individuals having

lung cancer (z1), there is a much higher proportion of individuals having been both exposed to

asbestos and smoking than among those not having lung cancer (z2). The variables W and V are

therefore associated conditionally on each value of Z. Notice that, from Figure 8, Z is an outcome

variable of W and V : the distributions conditional on Z do not represent sub-mechanisms and are

therefore not structural, though pZ|W,V is.

4.3 Controlling for latent confounders

Latent or unobserved confounders can sometimes be controlled for by proxy variables or by instru-

mental ones. Judea Pearl (2000) has devised a so-called Front-Door Criterion that can be applied for

possibly controlling a latent confounder. Consider the DAG of Figure 9. To borrow Pearl’s example,

X could be smoking, Z tar deposit in the lungs, Y lung cancer, and U (unobserved) genotype. In
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Figure 9: Controlling for latent confounders

this DAG, U is a latent confounder of the X → Z → Y path, Z being an intervening variable, or

mediator, between X and Y . The parents of Y are Z and U . The DAG corresponds to the joint

distribution

pX,Y,Z,U = pU pX|U pZ|X pY |Z,U (21)

under the independence conditions Z⊥⊥U | X and Y⊥⊥X | Z,U . For measuring the (indirect) causal

effect of X on Y , Pearl proposes a two-step procedure in order to control for the latent variable

U (parentheses are ours). First, one computes the (direct) causal effect of X on Z, which is not

confounded. Secondly, one computes the (direct) effect of Z on Y , which is however confounded by U

as the latter is a common cause of Z (via X) and Y . But U can be controlled for by conditioning on

X, which is on the path U → X → Z and therefore “blocks” the path from U to Z (i.e. Z⊥⊥U | X).

These two (direct) causal effects, of X on Z and of Z on Y , can be combined in order to yield the

(indirect) causal effect of X on Y controlling for U . This procedure can be applied if the set of

variables Z satisfies Pearl’s front-door criterion: Z interrupts all directed paths from X to Y , there

is no back-door path from X to Z, and all back-door paths from Z to Y are blocked by X. In

Pearl’s terminology, a back-door path is a path between two causally ordered variables that includes

an arrow pointing to the first variable, such as the path X ← U → Y from X to Y in Figure 9 (see

also e.g. Morgan and Winship, 2007).

Actually, the non-observability of U raises two difficulties. Firstly, besides Z, U is another parent

of Y . Secondly, U is also a confounder, being a common cause of Z (via X) and Y . If the confounding

effect of U is indeed controlled for by Pearl’s procedure, it should be noticed however that variations

in Y are due both to variations in Z and to variations in U . In order to obtain the direct effect of a

variation in Z on Y , net of the influence of U , one would have to cancel the effect of a variation of U

on Y , i.e. also control for U as implied by the general rule for direct effects. And this is not possible,

as U is latent. More importantly, and for the same reason, possible moderator effects or interactions

between the causal effects of X (via Z) on Y and of U on Y cannot be examined. Pearl’s approach

does not therefore completely get rid of the extraneous impact of U on the X → Z → Y relationship,

even when the front-door criterion is satisfied. In such a case, there would be no complete solution
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unless the structural model be enlarged by adding new variables, such as e.g. parents of U that

might possibly be used as proxies.

4.4 Total effects and control variable selection

Our general rule for determining the variables to control for, given in section 3.3, referred to the case

of the direct effect of a cause X on an outcome of interest Y . We also propose a simple rule when

determining the total effect of X on Y , composed of direct and indirect effects or more generally of

multiple directed, or causal, paths from cause to outcome. The DAG represented in figure 10 is also
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Figure 10: Direct effects and control variables

discussed by Pearl (2000, pp. 151-152) on the basis of his back-door criterion. In this DAG, the total

effect of X on Y is transmitted by the direct path X → Y and by the indirect path X → Z → Y .

As X is both a parent and a non-parent ancestor of Y , the distribution pY |X characterizes a prima

facie total effect of X on Y . However, this effect of X on Y is influenced by the confounder K,

a common cause of both X and Y . There could also be an interaction (not considered by Pearl)

between the effect of X on Y and that of K on Y . For these reasons, one should control for (or

condition on) K, i.e. examine the total effect of X on Y for fixed values of K. Notice that K is not

on a directed (causal) path from X to Y , though K is on a “back-door” path X ← K → Y between

the two. As one sees from Figure 10, one should control for parent K of Y but not for parent Z of

Y , as Z is on a directed path, in this case an indirect path, from the cause X to the outcome Y .

Consider now the more complex DAG of Figure 11 and suppose that one is interested in evaluating

the total effect of X on Y through the mediators Z and K (the four variables are highlighted in bold).

Here X is a non-parent ancestor of Y ; the distribution pY |X characterizes once again, a prima facie

total effect of X on Y .

From the graph, one sees that the direct path X → Z is confounded by the variable L and the

direct path Z → Y by the variable W. Moreover, the direct effect of M on K may be in interaction

with the effect of X on K. One should therefore control for the three variables L, W, and M - parents

respectively of the outcomes Z, Y, and K - by applying the general rule for determining control

variables in the case of direct effects. This successive application of the rule for direct effects leads

to a general rule for determining control variables when measuring the total effect of a variable X on
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Figure 11: Total effect and control variables

a variable Y: One should control for all the parents of the variables on the paths from X (excluded) to

Y (included), excepting these variables on the paths themselves. For example, one should control for

the parents of Y excluding Z and K, which are on the indirect paths from X to Y, i.e. for variable

W which is not on one of these two indirect paths. A similar reasoning applies when considering Z

and K: one should respectively control for L and M , but not for X.

This suggests that the total effect of X on Y may be evaluated by comparing the conditional

distributions pY |X,L=li,W=wj ,M=mk
for a set of values (li, wj ,mk), where pY |X,L,W,M may be obtained

as follows:

pY |X,L,W,M =

∫ ∫
pZ|X,L,W pK|X,M pY |W,Z,K dZ dK. (22)

This is considerably more complex than the evaluation of the total effect of X on Y based on pY |X

that does not take into account the interaction and confounding effects of L,W and M .

5 Discussion and Conclusions

The problem of control arises when defining and measuring the effect of a cause on an outcome

in a complex system. It requires a distinction between total, direct and indirect effects, either in

a prima facie form or in a suitably controlled form. The issue of control is approached, in this

paper, in a specific framework of structural modelling. More explicitly, a structural model is taken

here as a representation of the underlying structure of a data generating process for a well-defined

population of reference. This representation is based on background knowledge, in particular in the

form of some reasonably-accepted theory and well-founded observations, and checked for stability,

or invariance, relative to a class of interventions or of changes of environment.

In this framework, a complex, and therefore multivariate, global mechanism is recursively de-

composed into an ordered sequence of sub-mechanisms represented by conditional distributions. A

structurally valid recursive decomposition allows the modeller to interpret the conditioning variables

as causes of the outcome. In this approach, the effect of a variation of a cause is to bring about

a variation of the conditional distribution of the outcome, and the problem of control consists in
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analyzing this co-variation for different values of the variables to be controlled for.

For an outcome of a sub-mechanism of interest, the recursive nature of the decomposition leads

to distinguishing between parents and ancestors of the outcome and to recognize the possibility of

multiple paths from an ancestor variable to the outcome of interest.

Focusing specifically on the outcome variables, two general rules are proposed in this paper for

deciding what variables to control for. Concerning firstly the direct effect of a parent X on an

outcome of interest Y , control variables are those other parents of Y that have a direct effect on

the outcome. Secondly, concerning the total effect (e.g. in the case of multiple causal paths) of an

ancestor variable X on an outcome of interest Y , control variables are those parents of the variables

on the paths from X (excluded) to Y (included), excepting these variables on the paths themselves.

The set of variables to be controlled for is thus larger than that of confounders determined by

Pearl’s back-door criterion. These rules take however exception with the statement, recalled in the

Introduction, that one should control for all variables possibly having an effect on the outcome of

interest, as the present approach restricts the set of variables to be controlled for to a subset of the

ancestors of the outcome.

Controlling thus means examining the behaviour of conditional distributions that represent sub-

mechanisms under different values of the control variable(s). These different values may however

result from two different procedures. A first procedure conditions on different values of the control

variable and may accordingly be called “controlling by conditioning”. This operation is made on a

given (structural) model and does not affect the structure of the model as it is independent of its

empirical basis. This approach, based on standard rules of probability theory, is often used with

observational data but could also be used with experimental data.

Another procedure intervenes in the global mechanism by fixing the values of the variable to be

controlled for. It can be called “controlling by intervention”. For some authors, such as D.B. Rubin

and P.W. Holland (Holland, 1986), there is “no causation without manipulation”, i.e. intervention.

It should be noted that controlling by intervention implies a modification of the DGP: the variable

to be controlled for is not generated anymore by the sub-mechanism identified in the recursive

decomposition, but by the intervention itself. As pointed out by Lucas (1976), and often overlooked

in the literature on causality, such a modification of the sub-mechanism may also lead to modifying

other sub-mechanisms, in particular when the intervention is operated under a change of policy

active on the global mechanism. This is not the case in the “controlling by conditioning” approach,

where no changes are brought to the DGP.

An intervention that alters the DGP indicates that the mechanism is not modular, i.e. one

cannot intervene on one part of the mechanism without altering other parts. For some, this would

indicate that the mechanism is not causal. For these authors, modularity is considered a conceptual

requirement for causal relations. Therefore, an important question for causal inference is whether,
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and to what extent, a mechanism is modular, which we can only find out by looking at empirical

data; for a discussion, see Illari and Russo (2014, ch.7 and 10).

Various important caveats have however to be pointed out. Some DGPs are possibly not re-

cursive. For example, Newton’s law of gravitation can be viewed as a reciprocal action among

bodies, without a specific ordering that would make one body cause the attraction of the other

one. Other DGPs could possibly be recursive but background information is insufficient for building

the structural model and the corresponding DAG. For example, several explanations of the fertility

transition2 have been offered in the literature but there is no consensus among demographers on

the correct mechanism. In this situation, checking whether one hypothesis leads to more stable

mechanisms than another hypothesis may be particularly relevant but does not always provide a

conclusive answer to this challenge. In other cases, a structural model can be proposed but the data

are unavailable for some of the variables in the model and these remain latent. This is also the

case with time-dependent feedback models, which are recursive but where data are lacking on the

accurate timing of causes and outcomes.

Sub-mechanisms have to be clearly spelled out and justified, and the role-function of each variable

in the sub-mechanism must be given. If there are several paths from cause to outcome, e.g. various

risk behaviors for cardiovascular diseases, one should state whether exposed individuals can follow

several paths together or whether these paths are mutually exclusive. Structural models, and the

causal inferences derived from them, refer to a population and not to an individual. At the individual

level, one cannot experience at the same time both the putative cause and its counterfactual, e.g.

taking aspirin to recover from a cold and not taking aspirin. At the population level this is however

not true: for colds, some individuals take aspirin and others do not, and an important issue here is to

take into account the fact that the individuals in the two groups possibly differ on other factors too,

populations being heterogeneous. Thus, in this paper the focus has been on conditional probability

distributions instead of solely on their characteristics, such as the conditional expectation (e.g. the

expected number of children per woman ).

To conclude, there are no conditional independencies that alone tell us whether a variable is

a control variable that has to be included in the model. Such decisions are taken, to the best of

our knowledge, on the basis of background information, of preliminary analyses of data and of the

structural model that is accordingly proposed. “To the best of our knowledge” implies keeping open

the possibility of improving the structural model by incorporating innovations in the field of data,

theory and methods. In particular, the progress of knowledge can lead to uncovering previously

unrecognised control variables and unrecognised mechanisms.
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Appendix : DAG and Recursive decomposition

The graph illustrated by Figure 11 illustrates a case of non-uniqueness of a recursive decomposition

corresponding to a given DAG. Indeed, this DAG may correspond either to the recursive decompo-

sition:

pL pW pM pX|L pZ|X,L,W pK|X,M pY |W,Z,K (23)

or to:

pL pW pM pX|L pK|X,M pZ|X,L,W pY |W,Z,K (24)

In both cases, these recursive decompositions incorporate the following independence hypotheses:

L⊥⊥W⊥⊥M X⊥⊥W,M | L Y⊥⊥L,X,M |W,Z,K (25)

But the first one also incorporates:

K⊥⊥Z,L,W | X,M Z⊥⊥M | X,L,W (26)

whereas the second one assumes

K⊥⊥L,W | X,M Z⊥⊥K,M | X,L,W (27)

Equations 23 and 24 represent a same multivariate distribution: the two recursive decompositions

are therefore observationally equivalent. But the hypotheses 26 and 27 bear on different conditional

distributions and thus on different sub-mechanisms. Thus, for instance, hypothesis 26 assumes

that the conditional distribution pK|Z,L,W,X,M does not depend on Z,L,W whereas hypothesis 27

assumes that the conditional distribution pK|L,W,X,M does not depend on L,W . This example shows

that background knowledge may have a crucial role in deciding which conditional distribution is

actually structural and which independence conditions should be tested. The model-builder should

first order all the variables, as a basis for a recursive decomposition. Next, for each factor, the

conditional independence conditions should be elucidated and finally the DAG proposed with the

arrows corresponding only to the cause-effect relations.

Figure 11 and decompositions (23) and (24) furthermore raise questions about the ordering of

the variables once the independence conditions have been incorporated. Indeed, Figure 11 leads to

the following hierarchy of the variables:

{L,W,M} ≺ {X} ≺ {K,Z} ≺ {Y } (28)

with two equivalence classes: {L,W,M} and {K,Z}, where {α} ≺ {β} should be read “ {α} pre-

cedes {β}”. To the first equivalence class correspond 3! = 6 recursive decompositions corresponding
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to different orders inside this equivalence class and therefore to different possible sub-mechanisms.

Although these sub-mechanisms may have different plausibilities as viewed from background knowl-

edge, these 6 representations correspond to a same DGP. A similar remark holds for the second

equivalence class, with the additional remark that the 2 orderings require the same variables to be

controlled for.
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