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Abstract

This paper investigates the differential impact that alternative pen-
sion systems have on the labor supply and the accumulation of physical
and human capital for individuals that differ by their learning abil-
ity and levels of life expectancy. Our analysis is calibrated to the US
economy using a general equilibrium model populated by overlapping
generations, in which all population groups interact through the pension
system, the labor market, and the capital market.

1 Motivation

In many countries, economic development has been accompanied with sig-
nificant increases in life expectancy. Since the 19th century life expectancy
has increased by forty years at a rate of three months per year (Oeppen and
Vaupel (2002) and Lee (2003)). As noted in Pestieau and Ponthire (2012) the
increase in longevity has not been accompanied by a decrease in the variability
of longevity across individuals. Indeed, Pestieau and Ponthire (2012) argue
that “Longevity inequalities across groups within nations may be as large - if
not larger - than longevity inequalities between nations.”
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How far may such inequalities in life span translate into differences of life
cycle decisions? Moreover, may social institutions intervene with the het-
erogenous life spans in a society and thereby affect the inequality within the
economy? As demonstrated in Pestieau and Ponthire (2012) with a benchmark
OLG model with two periods and two types of agents (long and short lived),
a utilitarian social planner who maximizes the sum of individual utilities may
thereby induce a redistribution from the short to the long lived individuals.

Existing theoretical models that analyze the effect of mortality on educa-
tion and labor supply are numerous but partly contradict the historical em-
pirical evidence such as the decline in labor supply with increasing longevity.
The positive link between human capital investment and life expectancy as
observed in historical time series is also theoretically replicated through the
well-known Ben-Porath (1967) mechanism and overall undisputed (de la Croix
and Licandro (1999), Kalemli-Ozcan et al. (2000), Zhang et. al. (2001), Zhang
et. al. (2003), Cervellati and Sunde (2005), Soares (2005), Zhang and Zhang
(2005), Jayachandran and Lleras-Muney (2009), and Oster et al. (2013)), ex-
cept by Hazan and Zoabi (2006). However, studies about the effect of mor-
tality improvements on the decline in labor supply are scarce and offer several
complementary explanations. For instance, Kalemli-Ozcan and Weil (2010)
suggest that the decline in labor supply might be explained by reductions
in the risk of dying before retirement, named “uncertainty effect”. More re-
cently, Bloom et al. (2014) point out that positive income effects along the
20th century might have offset the gains in healthy life after retirement, or
“compression of morbidity” effect (see Bloom et al. (2007)). Several authors
have recently shown that the link between life expectancy and labor supply
depends on the age pattern of mortality improvements. In particular, mortal-
ity declines during adulthood may cause early retirement, while reductions in
mortality at older ages delay retirement (d’Albis et al. (2012) and Strulik and
Werner (2012)).

However the role of heterogeneous life spans on the education and labor
supply decisions in a society has not yet been investigated. In our paper we
study how the composition of the population in low and high life span people
may result in different aggregate levels of education and labor supply as well
impact on the inequality in a society. To do so, we implement two alterna-
tive pension benefit formulae and study how far such a welfare institutional
arrangement may reduce or enhance the resulting inequality in a society.

Our results indicate that the pension system may enhance income inequal-
ity in the long run. In particular, we show that larger inequality can be caused
by a non progressive pension system, such as those in many European coun-
tries, because of the positive effect that the pension system has on the marginal
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benefit of education.
The paper is organized as follows: Section 2 introduces the model setup. In

Section 4, we explain the thought experiments. In Section 5 we solve the model
numerically and consider the role of different pension systems for behavioral
effects, redistributive effects and macroeconomic effects in detail. Section 6
concludes the paper.

2 Model

This paper builds a computable overlapping generation model of labor supply,
human capital formation, and physical capital accumulation with heterogene-
ity in human capital and life expectancy. The model analyzes the economic
consequences of running a pension system with a progressive replacement rate
versus a flat replacement rate in the context of within cohort heterogeneity in
life expectancy and human capital. The model is close in spirit to Heckman
et al. (1998), Ludwig et al. (2012) and more recently to Geppert (2015). Nev-
ertheless, our focus is on the analysis of different pension systems, rather than
about rising wage inequality (Heckman et al., 1998) or the wealth inequality
driven by the demographic change (Geppert, 2015). Moreover, the previous
models are extended by introducing longevity differentials within the same
cohort.

2.1 Demographics

Time is discrete. Individuals face mortality risk and may live up to a maximum
of 120 years. We assume agents born are heterogenous by their frailty level
and their learning ability level, denoted by the letter θ. Individuals belong to
any of three different frailty groups, which are distinguished by the variable
µ ∈ {1, 2, 3}. The first group (µ = 1) is assumed to be the most frail and has
the shortest longevity, individuals that belong to the second group (µ = 2)
have an average frailty and hence their life expectancy is close to the average of
the whole population, individuals belonging to the third group (µ = 3) are the
less frail and have the longest life expectancy. Let the probability of surviving
to age j in year t of an individual of type µ be

st,j(µ) =

j−1∏
u=0

πt−j+u,u(µ) with s·,0(µ) = 1 and s·,Ω(µ) = 0. (1)

where πt,u(µ) is the conditional probability of surviving to age u for an indi-
vidual in year t that belongs to the frailty group µ.
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Let Nt,j(θ, µ) be the number of people of type (θ, µ) who are j years old
at time t. Let G(θ, µ) be the joint distribution of individuals of type (θ, µ)
at birth. We assume for simplicity that our population is closed to migration
and that individuals belonging to each demographic group (θ, µ) stay in that
group until death. The dynamics of the population group (θ, µ) is described
by the following set of equations:

Nt+1,0(θ, µ) = st+1,0(µ)
Ω−1∑
j=0

Ft,j
Nt,j(θ, µ) +Nt,j+1(θ, µ)πt,j+1(µ)

2
ffab, (2)

Nt+1,j+1(θ, µ) = Nt,j(θ, µ)πt,j(µ) (3)

where Ft,j is the fertility rate at time t for an individual of age j and ffab is the
standard frequency of female at birth (i.e. ffab = 0.4886). Eq. (2) is the total
number of surviving births in year t+1, whereas Eq. (3) accounts for the total
number of survivors of type (θ, µ) to time t+ 1 for the cohort born in year s.
The total population size in year t equals Nt =

∑Ω
j=0Nt−j,0

∫
st,j(µ)dG(θ, µ).

2.2 Firms

Firms operate in a perfectly competitive environment and produce one homo-
geneous good, which can be consumed or stored by individuals, according to
a Cobb-Douglas production function:

Yt = Kα
t (AtHt)

1−α , (4)

where α is the capital share, Yt is the output in period t, Kt is the stock of
physical capital in period t, At is the labor-augmenting technological progress,
and Ht is the aggregate stock of employed human capital in period t. For sim-
plicity, we assume At increases annually at a constant rate gA. It is important
to realize that a Cobb-Douglas production function rather than a CES pro-
duction function is justified in this framework to avoid endogenous economic
growth when the elasticity of substitution between factors is high (Barro and
Sala-i-Martin, 2003).

Capital stock evolves according to the law of motion Kt+1 = Kt(1−δ)+It,
where δ is the depreciation rate of capital and It is aggregate gross investment.
Production factors are paid at their marginal products:

RH
t = (1− α) (Yt/Ht) , (5)

rt = α (Yt/Kt)− δ. (6)

where RH
t is the rental rate on human capital at time t and rt is the net return

on physical capital at time t.
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2.3 Household’s problem

Households at time t are heterogeneous in seven dimensions: age (j), asset
holdings (a), the stock of human capital (h), the average past pension earnings
(p), the household size (η) –measured in units of equivalent adult consumption,
the learning ability (θ), and the frailty group (µ). Let denote the set of the
state variables at age j at time t for an agent of type (θ, µ) by Xt,j(θ, µ) =
{at,j, ht,j(θ), pt,j, ηt,j(µ), θ, µ}. The expected utility (V ) of a household head of
type (θ, µ) and age j at time t takes the following functional form:

Vt,j (Xt,j(θ, µ)) = U (ct,j, zt,j) + βπt+1,j+1(µ)Vt+1,j+1 (Xt+1,j+1(θ, µ)) (7)

where β is the subjective discount factor, U is the period utility function (with
Uc ≥ 0, Uz ≥ 0, Ucz ≤ 0, Ucc ≤ 0, and Uzz ≤ 0), cs,t is the consumption of the
household head, and zs,t is the leisure time of the household head at age j in
time t.

We assume agents start making decisions at the age of 15, which corre-
sponds to the age after nine years of compulsory education. Each period,
agents are endowed with one unit of time. They optimally choose their con-
sumption path, leisure time, hours of work, and the fraction of time invested in
human capital formation. In this model we can distinguish up to three periods
of human capital investment: i) a period of specialization in schooling, ii) a
period of on-the-job training in which the time devoted to human capital in-
vestment monotonically decreases until retirement, and iii) a retirement period
in which individuals do not invest in human capital (Blinder and Weiss, 1976).
Agents start with zero assets, zero pension earnings, and an initial human cap-
ital h0 that is similar for all individuals regardless their life expectancy and
ability due to the compulsory education (i.e. at,15 = pt,15 = 0 and ht,15(θ) = h0

for all t). Similar to Ŕıos-Rull (2001), Braun et al. (2009), and Ludwig et al.
(2012) agents may borrow against future labor income in order to finance their
consumption and their educational investment. Thus, assets held (a) evolves
over the life cycle according to

at+1,j+1 =

{
Rt(at,j + trt,j(θ, µ)) + (1− τt)yt,j − ct,jηt,j(µ) for j ≤ JR,

Rt(at,j + trt,j(θ, µ)) + bt,j(JR)− ct,jηt,j(µ) for j > JR,
(8)

where Rt = 1+rt is the capitalized rate of return of capital at time t, trt,j(θ, µ)
is the average bequest received at age j at time t by an agent of type (θ, µ),
τt is the social security contribution rate in year t, yt,j = RH

t ht,j`t,j is the
(gross) labor income at age j in year t, which is a function of the rental rate
of human capital in year t (RH

t ), the stock of human capital at age j in year t
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(ht,j), and the fraction of time devoted to work (`t,j); ηt,j(µ) is the household
size measured in terms of equivalent adult consumption. This assumption has
been shown to be important for explaining household saving (Curtis et al.,
2015; Attanasio and Weber, 2010; Browning and Ejrnaes, 2009; Browning and
Lusardi, 1996). JR is the retirement age, and bt,j(JR) is the pension benefits
received at age j in year t by an individual retired at age JR, which can be
decomposed in the following three components:

bt,j(JR) = λ(JR)ψ(pt,j)pt,j, (9)

where ψ(pt,j) is the replacement rate associated to pt,j pension earnings and
λ(JR) is the pension penalties or rewards from retirement at age JR.

The introduction of pension earnings as a state variable in Eqs. (7)-(8)
implies that agents understand the rules on how pension benefits are calculated
(Ludwig and Reiter, 2010; Sanchez-Romero et. al., 2013). In other words,
agents internalize that higher labor earnings affects positively on their future
pension benefits. In particular, pension earnings evolve over time according
to

pt+1,j+1 =

{
Itpt,j + %jyt,j(θ) for j ≤ JR,

pt,j for j > JR,
(10)

where It is a weight factor on past pension earnings and %j is the weight of
labor income at age j on pension earnings.

Agents may devote time to get education, denoted by e, to increase their
future human capital and hence labor income. We assume human capital
accumulates according to a standard Ben-Porath (1967) technology

ht+1,j+1|θ =

{
ht,j(1− δh) + q (ht,j, et,j; θ) for 15 ≤ j ≤ JR,

ht,j(1− δh) for j > JR.
(11)

That is, human capital increases due to investments in human capital q(h, e)
(with qh ≥ 0, qe ≥ 0, qhe ≤ 0, qhh ≤ 0, and qee ≤ 0), and decreases due to
the depreciation of human capital at an annual rate δh. We use a standard
Ben-Porath human capital production function

q (ht,j, et,j; θ) = ϕ(θ) (ht,jet,j)
γ with ϕ > 0, γ ∈ (0, 1), (12)

where ϕ(θ) is the learning ability for the individual of type θ and γ is the
returns to scale in human capital investment.
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2.3.1 Household’s decision problem

Households optimally allocate the resources by maximizing (7) with respect to
consumption, leisure, and human capital investment subject to (8)-(11) and
the time constraints zt,j ≥ 0, `t,j ≥ 0, et,j ≥ 0, and zt,j + `t,j + et,j = 1. All
feasible solutions are derived in a technical appendix. In this section, we focus
on the pre-retirement period.1

The following first-order conditions govern the model:

Uct,j = βπt+1,j+1(µ)
∂Vt+1,j+1

∂at+1,j+1

ηt,j(µ), (13)

Uzt,j ≥ βπt+1,j+1(µ)
∂Vt+1,j+1

∂at+1,j+1

(1− τ̃t,j)RH
t ht,j, (14)

and

∂Vt+1,j+1

∂ht+1,j+1

γϕ(θ)ht,j(ht,jet,j)
γ−1 ≥ ∂Vt+1,j+1

∂at+1,j+1

(1− τ̃t,j)RH
t ht,j, (15)

(the marginal benefit of education is equal, or greater, than the marginal cost)

A strict inequality implies that agents specialize in schooling and devote all
their time between schooling and leisure.

∂Vt,j
∂at,j

= βπt+1,j+1(µ)
∂Vt+1,j+1

∂at+1,j+1

Rt, (16)

(intertemporal arbitrage in returns on physical capital)

∂Vt,j
∂ht,j

= βπt+1,j+1(µ)

(
∂Vt+1,j+1

∂at+1,j+1

(1− τ̃t,j)RH
t `t,j +

∂Vt+1,j+1

∂ht+1,j+1

rht,j(θ)

)
, (17)

(the marginal value of human capital is the return to current and future earnings)

∂Vt,j
∂pt,j

= βπt+1,j+1(µ)
∂Vt+1,j+1

∂pt+1,j+1

It, (18)

(the marginal value of pension earnings is the return to future pension earnings)

where rht,j(θ) ≡
∂ht+1,j+1

∂ht,j
= γϕ(θ)et,j(ht,jet,j)

γ−1 + 1− δh is the rate of return to

human capital at age j in year t for an agent of type θ, and τ̃t,j is the effective
social security tax rate, which is given by

τ̃t,j = τt − ρj
∂Vt+1,j+1

∂pt+1,j+1

/
∂Vt+1,j+1

∂at+1,j+1

.

1During retirement our agents only decides about their consumption path. Leisure is
equal to one, and therefore both the hours worked and the human capital investment are
equal to zero.
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Hence, agents perceive only part of the social security contribution rate as a

tax and it can even be seen as a subsidy when τt ≤ ρj
∂Vt+1,j+1

∂pt+1,j+1

/
∂Vt+1,j+1

∂at+1,j+1
.

From (13) and (16) the standard optimal consumption path for an individ-
ual of type µ is given by

Uct,j
Uct+1,j+1

=

(
ηt,j(µ)

ηt+1,j+1(µ)

)
βπt+1,j+1(µ)Rt+1, (19)

where Eq. (19) is the well-known Euler condition. The left-hand side of Eq.
(19) is the marginal rate of substitution between present and future consump-
tion. The term in parenthesis on the right-hand side of (19) accounts for
the evolution of the household size. Thus, when the household size increases
the consumption of the household head decreases, and vice versa. While the
second term on the right-hand side of (19) implies that, in the absence of
an annuity market, consumption increases when agents discount future con-
sumption less than the market, i.e. βπt+1,j+1(µ)Rt+1 > 1, and decreases when
βπt+1,j+1(µ)Rt+1 < 1. Thus, for the same ability level, the existence of three
frailty groups in the population implies three different consumption/saving
trajectories.

The optimal labor supply decision is characterized by the marginal rate of
substitution between consumption and leisure:

MRSc,z ≡
Uzt,j
Uct,j

≥ (1− τ̃t,j)RH
t ht,j

ηt,j(µ)
for j ∈ {15, . . . , JR}. (20)

Eq. (20) implies that leisure is increasing the larger is the net (of implicit
labor tax) wage rate per hour worked relative to the household consumption.

From (12) and (15)-(17), the optimal on-the-job training investment satis-
fies

et,j =
1

ht,j

(
γϕ(θ)

JR∑
x=j+1

[
x∏

z=j+1

rht−j+z,z(θ)

Rt−j+z

]
1− τ̃t−j+x,x

1− τ̃t,j
RH
t−j+x

RH
t

`t−j+x,x
rht−j+x,x(θ)

) 1
1−γ

,

(21)
According to (21) the optimal fraction of time devoted to on-the-job training
is increasing the higher is the learning ability of the individual, the larger
the future hours worked, the higher the retirement age (JR), and the lower
the future returns on physical capital. Moreover, it is worth stressing that the
pension system may also influence the optimal investment in education through
the effective social security tax rate. Thus, in this framework, there exists a
positive relationship between on-the-job training and the pension system when
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future effective social contribution rates are lower than present effective social
contributions rates, i.e. τ̃t−j+x,x < τ̃t,j for j ≤ x ≤ JR. Assuming that neither
the social contribution rate (τ) nor the weight of labor income on pension
earnings (ρ) change over time, the pension system has an unambiguous positive

effect on human capital investment if
∏x

v=j+1
It−j+v
Rt−j+v

< 1, and it is negative

otherwise. Moreover, the incentive to invest in human capital increases, the
greater is the gap between the capitalized returns to physical capital and the
weighting factor on past pension earnings, all other variables constant.

2.4 Government

We assume the government has two main activities: i) running a balanced pay-
as-you-go (PAYG) pension system and ii) levying a 100% tax on assets held
by agents dead each year and distribute it among the surviving population.

To guarantee a zero deficit in the PAYG pension system, the government
is assumed to modify the social security contribution rate τt each year in order
to finance all the pension benefits claimed by retirees. The social contribution
rate is the same for all type of agents regardless their age, learning ability, or
life expectancy. Moreover, the government sets a mandatory retirement age
JR, which it is assumed to be the same in all periods.

To be as realistic as possible, we assume the government distributes the
bequest among individuals belonging to the same population type (θ, µ). More-
over, as a general rule, the bequest is given to the surviving members of the
generation prior to the individual dying, which closely coincides with the mean-
age of their children.2 However, when deaths occur below age 42, the bequest
is assumed to be distributed within the same age group (i.e. cohort) since by
assumption individuals under age 15 cannot hold assets. Thus, the amount of
bequest received at age j at time t by an individual of type (θ, µ) is

trt,j(θ, µ) =


0 If j < 15,

at,j+28(θ, µ)
Nt,j+28(θ,µ)(1−πt,j+28(µ))

Nt,j(θ,µ)πt,j(µ)
+ at,j(θ, µ)

1−πt,j(µ)

πt,j(µ)
If 15 ≤ j ≤ 42,

at,j+28(θ, µ)
Nt,j+28(θ,µ)(1−πt,j+28(µ))

Nt,j(θ,µ)πt,j(µ)
If j > 42.

(22)

Realize that Eq. (22) is a generalization of the simple model proposed by

2The gap between each generation is assumed to be 28 years, which coincides with the
mean age of childbearing.
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Piketty (2011) to assess the evolution inheritances received by each age group
over time.

3 Equilibrium conditions under perfect fore-

sight

By assuming perfect foresight, agents will differ because of their learning ability
(θ), frailty (µ), and the different prices over their life course. Let Ps be the
vector of rental prices of physical capital and human capital, and social security
contribution rates faced by an individual born in year s over the lifecycle.

Given initial values {α, gA, δ, ϕ(θ), γ, µ}, we can define the recursive com-
petitive equilibrium as the sequence of a set of households policy functions
{Xt,j(θ, µ), ct,j, zt,j, et,j}, government policy functions {Bt,j, τt, λ(JR), ψ(p)}, and
factor prices {RH

t , rt}, for j ∈ {15, . . . ,Ω} and t > 0, such that

1. Given the factor prices and government policy functions, household pol-
icy functions satisfy Eqs. (13)-(18)

2. Factor prices equal their marginal productivities so that Eqs. (5) and
(6) hold.

3. The government’s budget constraints

τtR
H
t Ht =

Ω∑
j=JR+1

Nt−j,0

∫
bt,j(JR; θ, µ, Pt−j)st,j(µ)dG(θ, µ), (23)

(Total contributions paid equal total pension claimed)

and

Ω∑
j=15

Nt−j,0

∫
trt,j(θ, µ)st,j(µ)πt,j(µ)dG(θ, µ)

=
Ω∑

j=15

Nt−j,0

∫
at,j(θ, µ, Pt−j)st,j(µ)(1− πt,j(µ))dG(θ, µ)

(Total wealth transfers received equal total wealth transfers given) (24)

are satisfied.

10



4. The aggregate stock of physical capital and the aggregate stock of em-
ployed human capital are given by:

Kt =
Ω∑

j=15

Nt−j,0

∫
at,j(θ, µ, Pt−j)st,j(µ)dG(θ, µ), (25)

Ht =
Ω∑

j=15

Nt−j,0

∫
ht,j(θ, µ, Pt−j)`t,j(θ, µ, Pt−j)st,j(µ)dG(θ, µ). (26)

5. The commodity market clears:

Yt = Ct + St, (27)

where Ct =
∑Ω

j=15Nt−j,0
∫
ct,j(θ, µ, Pt−j)ηt,j(µ)st,j(µ)dG(θ, µ) is the total

consumption in year t and St is the gross saving in year t.

4 Parametrization

In this paper we aim at studying the economic consequences of running a
PAYG pension system with a progressive replacement rate versus a flat re-
placement rate.

We focus our analysis to the US economy, since the Old-Age, Survivors,
and Disability Insurance (OASDI), which is the largest component of the US
Social Security, runs a pension system with a progressive replacement rate
(Golosov et al., 2013). A recent study applied to the US by Ludwig et al.
(2012) has shown that adding endogenous human capital accumulation in OLG
models significantly reduces the adverse welfare consequences of population ag-
ing. Thus, in order to introduce endogenous human capital and have agents
with different labor income histories –and hence different replacement rates at
retirement, we assume individuals differ by their learning ability. As a conse-
quence, individuals with higher abilities will accumulate more human capital
and have higher incomes. In addition, since many studies have found a positive
correlation between schooling and health, we introduce additional heterogene-
ity by life expectancy. This is done by assuming that individuals may belong
to different mortality frailty groups (Vaupel et. al., 1979). Moreover, following
Lleras-Muney (2005) we set the population structure such that there exists a
negative correlation between ability and frailty. As a result, individuals with
longer schooling also have on average longer life expectancy.

To keep the model as tractable as possible, we assume individuals are
assigned at birth to any combination of three possible learning abilities and
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three frailty groups. This gives a total of nine different population groups
within each cohort. The reason for having three cases in each characteristic
rather than two is to be able to analyze the average individual at the same time
as having greater heterogeneity within a computationally tractable model.

In this paper we run two alternative scenarios. A baseline that replicates
the current parametric components of the US pension system and second, a
counterfactual experiment with a pension system that applies a flat replace-
ment rate to all retirees, whose value correspond to the average replacement
rate of the total retired population in the baseline scenario. Finally, since we
are also interested in understanding the effect of the pension system on the
economic decision making of our nine different population groups, we have
intentionally abstracted from the introduction of public goods and services,
which would be financed by general taxes that may have an influence on our
endogenous variables.

Next, we explain the main assumptions introduced in the demographic set
up and in the economic model to disentangle the different effects.

4.1 Demographics

We replicate the overall demographic features of the US population from year
1850 to 2010 – that is, single age-specific fertility rates and single age-specific
mortality rates – using inverse population projection methods (Lee, 1985; Oep-
pen, 1993). The demographic information for the period 1850-2010 is taken
from the US Census Bureau, the Human Mortality Database (HMD), and
the Human Fertility Database (HFD). Future fertility rates are based on UN
assumptions for the US population, whereas the future average mortality is
calculated based on the Lee-Carter model (Lee and Carter, 1992).3 Before year
1800 we assume a stable population (i.e. constant population growth). At the
individual level, we assume recently born individuals differ by their learning

3According to the Lee-Carter model, the temporal component of mortality gains at time
t can be described, on average, according to the following time series

kt+1 = µ̂+ φkt. (28)

In order to introduce the heterogeneity in our model, we assume individuals are subject to
different drifts as follows

µ̂ = µ̄+ µ with µ ∼ U(−µ̄, µ̄) and 0 < µ < µ̄. (29)

Thus, µ̄ matches the observed drift in the population, whereas each population group would
have a different µ value, and hence a different life expectancy. We apply this model from
year 1900 onwards to the US population.
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ability and life expectancy. We consider three learning abilities θ ={low=1,
average=2, high=3} and three alternative life expectancies µ ={high=1, av-
erage=2, low=3}, with equal marginal probabilities. Nevertheless, the popu-
lation weights, shown in Table 1, are set to capture the positive correlation
between life expectancy and learning ability.

[Table 1 about here.]

Figure 1 shows the evolution of the main aggregate demographic variables:
life expectancy, total fertility rate, and population distribution for several
years. Panel 1(a) shows the evolution of the life expectancies by frailty group.
Our simulated frail populations, which do not pretend to replicate actual data
from the US, present an increasing gap between the life expectancies of the dif-
ferent groups. In particular, we assume, in our hypothetical populations, that
the life expectancy gap between the most and less frail individuals is close to
17 years in 2000 and increases to 25 years by 2100. Panel 1(b) shows the pos-
itive correlation between life expectancy and ability, although the difference
in life expectancy by ability group is smaller than in Panel 1(a). This is due
to the fact that each ability group is comprised of individuals with different
mortality frailties. The weights at birth are given in Table 1. Nevertheless,
one should be aware of the fact that these weights will differ as individuals
age. In particular, the proportion of less frail individuals will increase, the
fewer surviving individuals are left in each birth cohort. Panel 1(c) shows the
evolution of the total fertility rate, which is assumed to be the same for all nine
population groups. This assumption although restrictive will allow us to focus
on the mortality channel. Thus, we prevent that our results will be affected by
the fact that each group face a different household size (i.e. total childrearing
cost).4 Panel 1(d) shows the population distribution in years 2015, 2050, and
2100 that results from the fertility and mortality depicted in Panels 1(a)-1(c).

[Figure 1 about here.]

4.2 The economy

In this subsection we first explain the main parametric components of the US
pension system (our baseline) and of the counterfactual experiment that is
implemented in our simulations. Second, we briefly introduce the main model
economy parameters.

4Indeed, differences in mortality rates below age 15 among the different groups are almost
negligible.
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Parametric components of the pension system. The US pension sys-
tem started in year 1935. The main feature of the US pension system compared
to many other pension systems of OECD countries is that its replacement rate
is progressive.

Given a retirement age JR, the benefits claimed at retirement can be mod-
eled with the following information: i) current contribution weights, ρj; ii) the
capitalization index, It; iii) pensionable earnings, p; iv) the replacement rate,
ψ(p); and v) the retirement incentives or penalties, λ(JR). Table 2 shows the
parametrization of three of the main components of the US pension system
(OASDI). Note that the pensionable earnings are derived by the accumulation
of labor income histories, which are endogenously determined in the model.
The value of ρj = ρ for all j is chosen so as to obtain a pension cost to output
ratio in year 2013 of 5%. This is done with a value of ρ of 1/35 or, equivalently,
the average of 35 years of work. Not surprisingly, this value coincides with the
US pension system that takes into account the highest 35 labor income along
the working life of an individual. In our case, the highest labor incomes are
close to retirement, hence we assume that ρ = 0 is initially zero and it is 1/35
during the last 35 years at work.

[Table 2 about here.]

As Table 2 shows the maximum replacement rate is 0.90, if an individual’s
pensionable earnings is less than six times the average labor income of the
economy, and the replacement rate tends to zero the larger the pensionable
earnings are.5 Let ȳt be the average labor income of the economy in year t,
which is calculated as

ȳt =
Total labor income in year t

Total number of workers in year t
.

As the second column in Table 2 shows the retirement incentives and penalties
depend on the difference between the actual retirement age and the normal
retirement age. In our simulations, we assume a fix retirement age of 65
(i.e. JR = 65). When the US pension system was introduced the normal
retirement age (denoted by JN) was set at 65 years. However, recent reforms
have established a gradual increase in the normal retirement age that depends
on the year of birth of the retiree. The evolution of the normal retirement

5In our simulations, the maximum pensionable earnings of high ability individuals is
almost twice the minimum pensionable earnings of low ability individuals. Thereby, all
simulated incomes are below the maximum pensionable earnings.
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age can be seen in the fourth column of Table 3.6 Additional incentives and
penalties were also introduced to guarantee the sustainability of the pension
system. In particular, individuals who decide to claim their pension benefits
before the normal retirement age are subject to penalties, while those who
decide to retire after the normal retirement age receive credits. Table 3, column
2, shows the yearly credits received by delaying the age of retirement from
JN to age 70, while column 3 shows the yearly penalties from claiming the
retirement benefits before the normal retirement age.

[Table 3 about here.]

The simulation results shown in Section 5 are based on the comparison
of two alternative pension systems. First, one pension system whose pension
formula resembles the largest ‘retirement benefit program’ of the US pension
system (OASDI) – see the parametric components in the first row of Table 2.
Second, another pension system with a fix replacement rate. For comparative
purposes between the baseline and the counterfactual, we set the fix replace-
ment rate at 0.385, which is the long run replacement rate value that we have
obtained for the average learning ability individual in the baseline simulation.

Model economy parameters. For comparability with the existing litera-
ture we opted for using the same parameter values of the closest model to ours
(Ludwig et al., 2012), which were also calculated for the US economy. Table
4 reports the main model economy parameters.

[Table 4 about here.]

We run the model assuming a standard CIES utility function

U(ct,j, zt,j) =
1

1− 1/σ

[(
cφt,jz

1−φ
t,j

)1−1/σ

− 1

]
,

which, in the interior solution, will imply the following Frisch elasticities on
education and labor supply

RH
t

et,j

∂et,j
∂RH

t

=
1

1− γ
,

RH
t

`t,j

∂`t,j
∂RH

t

=
1− `t,j − et,j

`t,j
(σ + φ(1− σ)) +

1

1− γ
et,j
`t,j

,

6This information can be checked at www.socialsecurity.gov
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respectively. Moreover, the intertemporal elasticity of substitution on con-
sumption is σ

σ+φ(1−σ)
. As a consequence, while the elasticity of education and

consumption are constant and equal to 2.86 and 0.71, respectively, the Frisch
elasticity of labor supply changes over the working life, across cohorts, and
by ability level. For instance, for cohorts born after 2000 the Frisch elastic-
ity of labor supply at ages 30, 40, and 50 will be close to 2.4, 1.2., and 0.9,
respectively.

5 The Simulations: Progressive replacement

vs. flat replacement

In this section we show the main simulation results, which we divide in three
parts. In the first part, we analyze the impact of the two pension systems
on the decision making process (consumption, leisure, educational investment,
and labor supply) and its consequences for the net labor income, pension
benefits, and the accumulation of physical and human capital. The baseline
simulation considers a progressive replacement rate that mimics the OASDI
pension system in the US. The alternative simulation is based on a constant
replacement rate of 0.385, that corresponds to the long-run replacement rate
for the average individual in the baseline simulation. In the second part, we
study how each pension system redistributes the resources among individuals
with different learning ability levels. We pay a special attention on the differ-
ence between the social contributions paid and the pension benefits received
by each ability group. This is because the government is considered to dis-
tinguish individuals by their ability group but not to know about the frailty
group. Finally, we compare the effect of each pension system on economic
growth.

5.1 Behavioral effects

In Figures 2-4 we begin by describing the optimal decisions for the cohort born
in 2000. It is assumed that individuals born in year 2000 have a (cohort) life
expectancy at birth of 85, 88.5, and 92 years for those with low ability, average
ability, and high ability, respectively. While the life expectancy at age 15 is
71, 74, and 77 for those belonging to the low, average, and high ability groups,
respectively. Moreover, this cohort is expected to raise, on average, one child
(i.e. two children per couple) and the mean-age of childbearing is assumed to
be 28 years old, which implies that the household size (measured in units of
equivalent adult consumers) peaks when the household head is of age 38.
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[Figure 2 about here.]

Figure 2 shows how individuals born in year 2000 optimally allocate their
time among leisure, labor supply, and educational investment over their life
cycles by their ability level. On average this cohort divides of its remaining
lifetime at age 15 between 22.6 (high) and 24.7% (low) for work and between
11.5 (low) and 13.2% (high) for educational investment. The lower labor sup-
ply over the life cycle of the high ability group relative to that of the low ability
group is due to the longer remaining life expectancy of the former group. In-
deed, although individuals with high ability enter four years later in the labor
market –from 18 years (low) to 22 years (high)–, they also supply more inten-
sive labor while at work. As a result, differences in total hours worked between
the three ability groups, weighted by the corresponding survival probabilities,
are almost negligible. The time spent on education is clearly higher for those
with higher ability than for those with lower ability. For a given interest rate,
this is because individuals with higher ability have a higher marginal benefit
of an additional hour of education than those with a lower ability.

We can see in Figure 2 that differences in time use between the flat re-
placement rate and the progressive replacement rate are small. Comparing the
dotted line with the solid line notice that a flat replacement rate marginally
reduces the time for leisure for all ability groups. Early in life, the labor supply
increases for individuals with a lower ability, while it decreases for average and
high ability individuals. Late in the working life, however, the labor supply
marginally increases for the average and high ability groups. As a consequence,
a flat replacement rate has a positive effect on the marginal benefit of educa-
tion for the average and high ability individuals but it is negative for the low
ability group.

[Figure 3 about here.]

Household consumptions, cash-in-hands, and saving over the life cycle by
ability level for the cohort born in year 2000 are shown in Figure 3. The
household consumption profiles, which are comprised of the adult consumption
plus the consumption of dependent children, are shown in the upper panels of
Figure 3. Cash-in-hand profiles for this cohort are shown in the middle panels.
Cash-in-hand includes net labor income, pension benefits, asset income, and
(capitalized) bequest received. Despite the inclusion of pension benefits and
the capitalized bequest, consumption over the life cycle is mainly financed
by the labor income. Table 5 shows that the present value of all transfers
received –bequest and pension benefits– and paid –social contributions– are
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close to cancel each other and never exceeds 2% of the present value of lifetime
labor income.

[Table 5 about here.]

Saving profiles for the cohort born in year 2000 by ability group are shown
in the bottom panels of Figure 3. Individuals borrow from age 15 to 30 re-
gardless their ability level. After age 30, the cash-in-hand exceeds consumption
until mid-80s. Thus, even thought individuals mandatorily retire at age 65 and
they do not save with a bequest motive in mind, this cohort still saves during
the first twenty years in retirement.

[Figure 4 about here.]

Figure 4 shows the evolution of our three endogenous stock variables for
each ability group: assets, pension earnings, and human capital stock. As
the upper panels in Figure 4 show, individuals with higher ability accumulate
more assets. This result is consistent with the positive correlation between
the ability level and the life expectancy. Pension earnings are also positively
related to the ability level since individuals with higher ability also have a
higher labor income (see the middle panels). The average replacement rate for
this cohort is 0.42, 0.38, and 0.34 for the low, average, and high ability groups
in the baseline simulation, while the replacement rate in the flat replacement
scenario was set at 0.385 for all ability groups. The next subsection explains in
more detail the redistributive consequences of implementing each replacement
rate. Due to the longer and higher intensive educational investment of the
higher ability groups, the human capital stock is also higher for those individ-
uals with higher ability. Comparing the dotted curves with the solid curves,
we can observe that the implementation of a flat replacement rate also boosts
the accumulation of human capital for individuals above the low ability level,
while it reduces the optimal accumulation of human capital for individuals
with low ability. As explained in Section 2.3.1 –see Eq. 21–, this is because
a higher (lower) replacement rate reduces (increases) the effective social secu-
rity tax rate, which induces a higher (lower) investment in education. At the
macro level and assuming a close economy, the higher human capital stock
leads to an increase in the return to physical capital and further accumulation
of physical capital. As a result, for a given social contribution rate, we can
conclude that a higher replacement rate raises the accumulation of physical
and human capital.
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5.2 Redistributive effects

This subsection focuses on the redistributive consequences of implementing a
progressive replacement rate versus a flat replacement rate. Using our simula-
tions we are interested in knowing who are the net beneficiaries of each pension
system. Assuming that the government knows the ability of each individual
but not the life expectancy, we start looking at how each simulation scenario
redistributes resources among the three ability groups from an individual per-
spective (cohort) and from a group perspective (cross-sectional).

[Figure 5 about here.]

The goal of the US pension system is to redistribute resources from high
income individuals to low income individuals through the progressive replace-
ment rate formula. To study the redistribution of resources, we first calculate
the total benefits received minus contributions paid by each ability group in a
given year

3∑
µ=1

120∑
j=66

bt,j(θ, µ)Nt,j(θ, µ)− τt
3∑

µ=1

65∑
j=15

yt,j(θ, µ)Nt,j(θ, µ).

In our general equilibrium model with perfect foresighted individuals, Figure
5(a) shows how the US replacement rate formula (baseline) does not redis-
tribute resources among our three ability groups. In contrast, Figure 5(b)
shows how a constant replacement rate of 0.385 implies that the low and av-
erage ability groups transfer each year around 4% of the total pension budget
to the high ability group. As Figure 6(b) shows this is because the relative
pension cost of individuals with high ability group to the output produced
by the same ability group is the highest in the flat replacement rate scenario,
while this cost is lower for the low ability group.

[Figure 6 about here.]

According to Figure 6 the total pension to output ratio will progressively
increase from five percent at the beginning of the twenty first century to over
twelve percent in year 2100, even after implementing the latest reforms of the
OASDI pension system.

However, neither Figure 5 nor Figure 6 are informative at the individual
level. To understand the redistributive goal of the pension system, we further
calculate for each individual type the ratio between the present value of the
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benefits received and social contributions paid over the life cycle (or social
security wealth) and the present value of the stream of labor income as follows∫

µ

∑120
j=66

bc+j,j(θ,µ)∏j
z=15Dz

−
∑65

j=15
τc+jyc+j,j(θ,µ)∏j

z=15Dz∑65
j=15

yc+j,j(θ,µ)∏j
z=15Dz

dG(θ, µ),

where Dz is the discount rate in year z. Since the social security wealth
value depends to a great extent on the discounting factor used, in Figure 7
we show the ratio between the social security wealth and the present value
of labor income by ability level under two different discount factors. The
upper panels use as discounting factor the (real) interest rate of the economy.
Note that since there is no annuity market, the values obtained in the upper
panels coincide with those used by our economic agents to make their optimal
decisions.7 The bottom panels show the ratio using the survival probability as
the only discount factor. Results presented in Figure 7 lead to the following
four conclusions: i) The social security wealth as a fraction of the present value
of labor income is very similar across the different ability groups and for the
different discount factor in the baseline simulation; ii) given that the present
value of labor income increases with the ability level, the social security wealth
is lower (higher) for the highest ability group when the discount factor is the
interest rate (survival probability); iii) with a flat replacement level, if we use
the interest rate as a discount factor, the social security wealth relative to the
present value of labor income is smaller, the lower the ability level is; and iv)
if we only consider the survival probability as the discount factor, in a pension
system with a flat replacement rate individuals with higher abilities receive on
average more benefits and contributions than individuals with lower ability.

[Figure 7 about here.]

5.3 Macroeconomic effects

As it has been shown in Figure 6 the population aging process will raise the
future cost of the OASDI pension system. Nevertheless, the increase in life
expectancy and the decline in fertility does not necessarily imply a burden
(Lee et al., 2014). To understand the macroeconomic consequences of each

7Simultaneously discounting the net social security transfers and labor income by the
interest rate and the survival probability, the results will be qualitatively similar to those
shown in the upper panels of Figure 5.
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replacement rate, we decompose the output per capita (Y/N) in the following
four components:

Yt
Nt

= At

(
Kt

Yt

) α
1−α Ht

Nt,15+

1

1 + ydrt
1+oadrt

. (30)

The first term on the right-hand side is the exogenous productivity growth
At, followed by the capital to output ratio (Kt/Yt), the average human capital
employed per individual older than 15 years old Ht/Nt,15+, and a ratio of
demographic dependency ratios. The ydrt stands for the youth dependency
ratio in year t and oadrt is the old-age dependency ratio in year t. Hence, by
definition only the second and third components are affected by changes in
the replacement rate of the pension system. Moreover, Eq. (30) clearly shows
that population aging might have a positive impact on income per capita.

Figure 8 shows the evolution of the youth and old-age dependency rates
for each ability group. According to our simulated demography, the youth
dependency rate stabilizes around 3 children per 10 people within ages 15-65
from year 2010, while the number of elderly people will increase from 2 in year
2000 up to a maximum of 6.5 per 10 people within ages 15-65 in year 2100.
Notice that the old-age dependency rate increases faster for the high ability
group because this group experiences a longer life expectancy. Given our fixed
retirement age and an increasing educational attainment, our demographics
implies that the total number of non-workers will exceed the total number of
workers by the end of the twenty first century.

[Figure 8 about here.]

Our agents will react to the demographic changes by modifying their con-
sumption pattern as well as their supply of productive factors: hours worked,
human capital stock, and assets. For convenience, we rewrite the average
human capital employed by ability level as

Ht

Nt,15+

=
3∑
θ=1

ht(θ)`t(θ)
Nt,15+(θ)

Nt,15+

, (31)
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where

ht(θ) =

∑Ω
j=15

∑3
µ=1 ht,j(θ, µ, Pt−j)`t,j(θ, µ, Pt−j)Nt,j(θ, µ)∑Ω
j=15

∑3
µ=1 `t,j(θ, µ, Pt−j)Nt,j(θ, µ)

, (32)

(Average human capital per worker of type θ)

`t(θ) =

∑Ω
j=15

∑3
µ=1 `t,j(θ, µ, Pt−j)Nt,j(θ, µ)∑Ω
j=15

∑3
µ=1 Nt,j(θ, µ)

. (33)

(Average time devoted to work per adult of type θ)

The macroeconomic consequences of the behavioral reactions are summa-
rized in Figure 9. First, given a mandatory retirement age, the time spent
working over the life cycle will decline on average from 28% to 23% due to the
longer life expectancy –see the top panels in Figure 9–. For the same reason,
individuals with higher ability will experience a faster decline than those with
a lower ability. Notice that this result holds even with a flat replacement.
Second, the decline in the intensive labor supply over the life cycle is offset
with an increase in the average human capital employed from three units in
2000 to over four units in 2100 –see the middle panels in Figure 9–. Note that
the increase is even higher when a flat replacement rate is implemented due to
the higher pension benefits received by individuals with an average and high
ability. Third, on average capital to output ratio will increase from 2.5 in 2000
to 2.8 in 2100. The evolution of this variable is however quite different among
the three ability levels and replacement rates. In particular, in our baseline
simulation, individuals with low ability have the highest capital-to-output ra-
tio at the beginning of the twenty first century due to the fact that they do not
borrow as much as the high ability group early in life. This process is however
reversed at the end of the twenty first century because the mean-age of asset
holders increase. Under a flat replacement rate, the capital-to-output ratio
between the two ability groups do not cross over because the low ability group
needs additional savings to finance their retirement, whereas the high ability
group compensates the higher benefits with lower savings (i.e. crowding-out
effect).

[Figure 9 about here.]

The small increase in the capital-to-output ratio is translated into lower
(real) interest rates along the twenty first century as shown in Figure 10. The
bump between 2030 and 2060 is the result of the progressive retirement of the
baby-bust, who work more hours at the end of their working lives. It is also
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interesting to point out that the higher interest rate in the flat replacement
rate simulation relative to the baseline is the consequence of the additional
incentives introduced by the pension system on the accumulation of human
capital.

[Figure 10 about here.]

Finally, combining the results plotted in Figures 8-10 through Eq. (30), we
derive the growth of the income per capita by ability level. Figure 11 shows
that the income per capita increases in both scenarios for all ability levels
mainly due to the accumulation of human capital. Note that the values plotted
in Figure 11 do not include the exogenous annual productivity growth of 2%.
However, the income per capita growth differs by ability level. For instance, the
average income per capita growth for individuals with low ability is less than
10% in one hundred years, while the increase is above 25% for individuals with
high ability. As a consequence, regardless the pension system implemented, the
model predicts a progressive increase in inequality between those individuals
with low, average, and high ability. This result stems from the fact that the
average capital-to-output ratio of low ability individuals declines along the
twenty first century.

[Figure 11 about here.]

6 Conclusions

This paper builds a computable overlapping generation model of labor supply,
human capital formation, and physical capital accumulation with heterogene-
ity in human capital and life expectancy. The model analyzes the economic
consequences of running a pension system with a progressive replacement rate
versus a flat replacement rate in the context of within cohort heterogeneity in
life expectancy and human capital.

We apply the model to the US economy through the implementation of the
OASDI pension system. The overall demographic features of the US popula-
tion are replicated in our model and we further introduce heterogeneity within
cohort by life expectancy and learning ability. The within cohort structure is
set so as to obtain a positive correlation between the ability level and frailty
(Lleras-Muney, 2005). Consequently, in our model, agents with longer school-
ing also have an average longer life expectancy.

Our simulations suggest the following results. First, the OASDI pension
system does not redistribute resources from low ability individuals to high abil-
ity individuals. Second, we obtain that future income per capita will increase
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for all ability levels due to the further accumulation of human capital. How-
ever, due to the positive correlation between the ability and life expectancy,
the inequality between the different ability groups will increase during the
twenty first century. Third, the model shows that there exists a positive link
between the generosity of the pension system and the accumulation of human
capital.
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7 Appendix: Household problem

We assume household heads start making decision when they complete the
elementary school (8th grade) at the age of 15. They choose the household
consumption path (c), the additional education (e) they still want to acquire,
and the leisure time (z). The remaining available time is devoted to work.

The expected utility V of a household head that belongs to group θ at age
x depends on the assets holding a, the average pension earnings p, the stock
of human capital h, and the demographic states η (household size measured
in units of equivalent adult consumption). For simplicity in the exposition we
get rid of the time variable and denote the next period with the symbol ‘′’.
Our agent solves the following problem:

For j ≤ JR:

V (a, p, h, η) = max
c,z,e
{U (c, z) + βπ′V (a′, p′, h′, η′)} (34a)

subject to

a′ = Ra+ (1− τ)whA(1− z − e)− cη, (34b)

p′ = Ip+ ρwAh(1− z − e), (34c)

h′ = h(1− δ) + q(h, e), (34d)

λ1(1− z − e) = 0, (34e)

λ2z = 0, (34f)

λ3e = 0, (34g)

For j > JR:

V (a, p, h, η) = max
c
{U (c, 1) + βπ′V (a′, p′, h′, η′)} (34h)
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subject to

a′ = Ra+ ψ(p)p− cη, (34i)

p′ = p, (34j)

h′ = h(1− δ), (34k)

and the boundary conditions

a0 = p0 = 0, h0 = 1, and aω+1, pω+1, hω+1 ≥ 0, (34l)

where c is the household consumption, e is the education effort, ` is the in-
tensive labor supply, β is the subjective discount factor, πx is the conditional
probability of surviving to age x, R is the capitalization factor, τ is the social
security contribution rate, w is the wage rate per unit of human capital, δ is the
human capital depreciation rate, and q(h, e) is the human capital production
function (with qh, qe > 0 and qhh, qee, qhe < 0).

7.1 First-order conditions and envelope conditions

Let define Ξ and Σ as the marginal rate of substitution between pension wealth
and assets and human capital and assets, respectively. The first-order condi-
tions and envelope conditions are

For j ≤ JR:

Uc = βπ′Va′η, (35)

Uz =
Uc
η
whA(1− τL) + λ1 − λ2, (36)

0 =
Uc
η

[whA(1− τL)− Σ′qe(h, e)] + λ1 − λ3, (37)

and

Va = Rβπ′Va′ , (38)

Vp = Iβπ′Vp′ , (39)

Vh = βπ′Va′
[
wA(1− z − e)(1− τL) + Σ′Rh

]
, (40)

where τL is the effective social security tax on labor

τL = τ − ρΞ′ (effective social security tax on labor), (41)

Rh = 1 + qh(h, e)− δ (capitalized return to education). (42)
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Notice that the law of motion of the marginal rate of substitutions for the
state variables are:

Ξ = Ξ′
I

R
, (43)

Σ = Σ′
Rh

R
+
wA(1− z − e)(1− τL)

R
. (44)

Recall that when the marginal rate of substitution is greater than one, the
household head will have an incentive to transfer resources from assets to
another state variable.

For j > JR:

Uc = βπ′Va′η, (45)

and

Va = Rβπ′Va′ , (46)

Vp = βπ′Va′ (ψ(p) + ψ′(p)p+ Ξ′) , (47)

Vh = βπ′Vh′(1− δ). (48)

Since in the last period Vh′ = 0, we have the following marginal rates of
substitutions:

Ξ = Ξ′
1

R
+
ψ(p) + ψ′(p)p

R
, (49)

Σ = 0. (50)

Solutions:

Assuming the following instantaneous utility functional form:

U(c, z) =

(
cφz1−φ)1− 1

σ − 1

1− 1
σ

.

Using the foc and envelope conditions, we have the following cases
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For j > JR:

Ṽa = Rβπ′Ṽa′

[
A′

A

]φ(1− 1
σ

)−1

, (51)

Ũc = Ṽa
η

R
, (52)

c̃ =

[
Ũc
φ

] 1

φ(1− 1
σ )−1

(53)

Ξ = Ξ′
1

R
+
ψ(p) + ψ′(p)p

R
, (54)

Σ = 0. (55)

For j ≤ JR:

If λ1 = λ2 = λ3 = 0 (interior solution), we have

Ũc = βπ′Ṽa′η

[
A′

A

]φ(1− 1
σ

)−1

,
Ũz

Ũc
=
wh(1− τL)

η
, qe(h, e) =

A

A′
wh(1− τL)

Σ̃′
,

(56)

which implies the following optimal control variables

h =
1

1− δ

h′ − ϕ(A′
A

ϕγΣ̃′

w(1− τL)

) γ
1−γ
 ,

e =
1

h

(
A′

A

ϕγΣ̃′

w(1− τL)

) 1
1−γ

,

c̃lr =
φ

1− φ
wh(1− τL)

η
,

z =

[
φ

Ũc

]σ
c̃lr

φ(1−σ)−σ
,

c̃ = zc̃lr,

Ξ = Ξ′
I

R
,

Σ̃ = Σ̃′
A′

A

Rh

R
+
w(1− z − e)(1− τL)

R
.
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Notice the utility function and the human capital production function satisfies
the Inada conditions. Hence, λ2 and λ3 are always zero.

If λ1 > 0 (Corner solution), we have

Ũc = βπ′Ṽa′η,
Ũz

Ũc
=
A′

A

Σ̃′qe(h, e)

η
, z = 1− e, (57)

which implies the following optimal control variables

log

[
1− (1− δ)ε?

1
γ

h′ − ϕε?

]
+ [σ − φ(σ − 1)] log

[
h′ − ϕε?

1− δ
ε?1− 1

γ

]
︸ ︷︷ ︸

LHS

= σ log

[
φ

Ũc

]
− [σ − φ(σ − 1)] log

[
1− φ
φ

A′

A

Σ̃′

η
γϕ

]
︸ ︷︷ ︸

RHS

, (58)

εi+1 = εi + ξ(LHS −RHS),

h =
h′ − ϕε
1− δ

,

e =
(1− δ)ε

1
γ

h′ − ϕε
,

z = 1− e,

c̃lr =
A′

A

φ

1− φ
Σ̃′qe
η
,

c = zclr.

For convenience we de-trend all the necessary variables by the productivity:

c̃ = c/A, (59)

Ũc = Uc
/
Aφ(1−σ)−1 , (60)

A priori z > 0, or λ2 = 0, because of the Inada conditions. Thus, the following
four alternatives are possible (in order of programming)
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Case 0 (Interior solution): λ1 = λ3 = 0, where lcrx = 1−φ
φ

ηx
µx

1
wx

If h∗ = 1
1−δh

[
hx+1 − ϕ

(
ϕγξHx+1

wxAx(1−τLx )

) γ
1−γ
]
< h̄ then hx = h∗,

otherwise hx = 1
1−δh

[
hx+1 − ϕ

(
ϕγξHx+1

wxAx(1−τx)

) γ
1−γ
]
,

(61)

The above piecewise function must be programmed in that order because there
exists a positive relationship between current stock of human capital and the
marginal rate of substitution between pension wealth and assets, i.e. ∂hx

∂ξPx+1
> 0.

τLx = τx − ξPx+1

{
1/JR if hx < h̄,

0 otherwise.
(62)

ex =
1

hx

[
hx+1 − hx(1− δh)

ϕ

] 1
γ

, (63)

c̃x
ηx

=

[
φ

ηxŨc

] 1
σ
[

lcrx
hx(1− τLx )

](1−φ)( 1
σ
−1)

, (64)

zx = µx
c̃x
ηx

lcrx
hx(1− τLx )

(65)

Case I: If e = 0 (when ξHx+1 = 0) and z < 1 or (λ1 = 0, λ3 > 0)⇒ We do not
need to change the equations

Case II: If e = 0 (when ξHx+1 = 0) and z > 1 or (λ1 > 0, λ3 > 0)

hx = idem (66)

ex = idem, (67)

c̃x
ηx

=

(
ηxŨc
φ

) 1
φ(1−σ)−1

, (68)

zx = 1 (69)
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Case III: If e > 0 (when ξHx+1 > 0) and z + e > 1 or (λ1 > 0, λ3 = 0). Find the
value of h that satisfies:

e(h) =
1

h

(
hx+1 − h(1− δh)

ϕ

) 1
γ

, (70)

log
ηxŨc
φ

= Ξ0 log
ξHx+1qe(h, ex(h))

wxAxlcrx
+ Ξ1 log

1− e(h)

µx
, (71)

c̃x
ηx

=
1− ex
µx

ξHx+1qe(hx, ex)

wxAxlcrx
, (72)

zx = 1− ex, (73)

where

Ξ0 = φ(1− σ)− 1, Ξ1 = −σ (74)

Computational strategy: First, we create a grid of feasible final consump-
tion values. Second, for i = 1 and given a final value of the human capital
hΩ(i) = 1 we recursively seek for the final value of pΩ(i) that gives a p0(i) = 0
when h0(i) = 1. Third, we store the triplet, including the value of the initial
assets, associated to the previous case {p0(i) = 0;h0(i) = 1; a0(i)}. Fourth,
we seek for the final human capital value hΩ(i) that makes a0(i) = 0 using the
following algorithm:

i=1

Err^i=1

while Err^i>0.001

i=i+1

Err^i=abs(h_\Omega(i-1)-0)

If Err^i-Err^{I-1}>0

\begin{cases}

\xi(i)=\xi(i-1)

h_\Omega(i)=h_\Omega(i-1)+\xi(i)(a_\Omega(i-1)-0)

else

\xi(i)=0.90\xi(i-1)

h_\Omega(i)=h_\Omega(i-1)+\xi(i)(a_\Omega(i-1)-0)

end

end
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8 Lifespan heterogeneity

To complete a CGE model, we found that it is necessary to have a continuum
of life expectancies within cohorts. In what follows I suggest a demographic
model that accounts for such population. The easiest and most coherent way
I can think about is using the temporal component of the Lee-Carter model
as follows:

Let the temporal component of mortality gains at time t be

kt+1 = µ(θ) + φkt, (75)

where the drift is

µ(θ) = µ̄+ θ with θ ∼ U(−α, α) and 0 < α < µ̄. (76)

Thus, µ̄ would match the observed drift in the population. For simplicity,
each population group would have a different θ value, and hence a different
life expectancy. An additional and convenient assumption is that there is no
possibility of moving from one θ value to another. This model can be applied
from year 1912 onwards to the US population, as in the previous simulation.
However, several issues still arise. For example, if we apply this mortality
model from age 0, shall the fertility pattern be the same for all population
groups? The main problem is that we need to find a balance between realism
and clean results that we know they are not contaminated by other effects.

35



List of Figures

1 US demographics . . . . . . . . . . . . . . . . . . . . . . . . . 30
2 Time use over the life cycle by ability level: 2000 birth cohort 31
3 Household consumption, cash-in-hand, and saving over the life

cycle by ability level: 2000 birth cohort (productivity de-trended) 32
4 Assets, pension earnings, and human capital stock over the life

cycle by ability level: 2000 birth cohort . . . . . . . . . . . . . 33
5 Benefits minus contributions by ability group (in percentage of

the total pension budget): Calendar years 1990-2090 . . . . . 34
6 Total pension to output ratio from 1990 to 2100 . . . . . . . . 35
7 Social security wealth as a fraction of present value of labor

income by alternative discounting factors: 1950-2050 birth cohorts 36
8 Demographic dependency rates: 1900-2100. . . . . . . . . . . . 37
9 Decomposition of the output per capita by ability level: Period

1990-2100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10 Interest rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
11 Income per capita (productivity de-trended): Period 1990-2100 40

36



Year

1700 1800 1900 2000 2100 2200 2300

P
e
ri
o
d
-l
if
e
 e

x
p
e
c
ta

n
c
y
 a

t 
b
ir
th

0

10

20

30

40

50

60

70

80

90

100

110
µ=1, High frailty

µ=2, Average frailty

µ=3, Low frailty

(a) Life expectancy by frailty (µ)

Year

1700 1800 1900 2000 2100 2200 2300

P
e
ri
o
d
-l
if
e
 e

x
p
e
c
ta

n
c
y
 a

t 
b
ir
th

0

10

20

30

40

50

60

70

80

90

100

110
θ=1, Low ability

θ=2, Average ability

θ=3, High ability

(b) Life expectancy by ability (θ)

Year

1700 1800 1900 2000 2100 2200 2300

T
o
ta

l 
fe

rt
ili

ty
 r

a
te

 (
T

F
R

)

1

2

3

4

5

6

7

8

9

(c) Total fertility rate

Population (in millions)

0 1 2 3 4 5

A
g
e

0

20

40

60

80

100

120
Year 2015

Year 2050

Year 2100

(d) Total population distribution

Figure 1: US demographics

37



20 40 60 80 100
0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Age, j

 

 

Baseline

Flat replacement

(a) Leisure time, low ability

20 40 60 80 100
0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Age, j

 

 

Baseline

Flat replacement

(b) Leisure time, avg. ability

20 40 60 80 100
0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Age, j

 

 

Baseline

Flat replacement

(c) Leisure time, high ability

20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

Age, j

 

 

Baseline

Flat replacement

(d) Labor supply, low ability

20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

Age, j

 

 

Baseline

Flat replacement

(e) Labor supply, avg. ability

20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

Age, j

 

 

Baseline

Flat replacement

(f) Labor supply, high ability

20 30 40 50 60 70
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Age, j

 

 

Baseline

Flat replacement

(g) Educational investment,
low ability

20 30 40 50 60 70
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Age, j

 

 

Baseline

Flat replacement

(h) Educational investment,
avg. ability

20 30 40 50 60 70
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Age, j

 

 

Baseline

Flat replacement

(i) Educational investment,
high ability

Figure 2: Time use over the life cycle by ability level: 2000 birth cohort
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Figure 3: Household consumption, cash-in-hand, and saving over the life cycle
by ability level: 2000 birth cohort (productivity de-trended)

Notes: Cash-in-hand includes net labor income, pension benefits, asset income, and bequest.
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Figure 4: Assets, pension earnings, and human capital stock over the life cycle
by ability level: 2000 birth cohort

Notes: Assets and pension earning values are de-trended by the exogenous productivity.
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Figure 5: Benefits minus contributions by ability group (in percentage of the
total pension budget): Calendar years 1990-2090
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Figure 6: Total pension to output ratio from 1990 to 2100
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Figure 7: Social security wealth as a fraction of present value of labor income
by alternative discounting factors: 1950-2050 birth cohorts
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Figure 9: Decomposition of the output per capita by ability level: Period
1990-2100.
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Figure 10: Interest rate
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Figure 11: Income per capita (productivity de-trended): Period 1990-2100
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Table 1: Ability and frailty distribution of a new born: G(θ, µ)

Frailty LE(µ)
Ability ϕ(θ) LE(1) LE(2) LE(3)

Low 0.15 1
6

1
12

1
12

Average 0.16 1
12

1
6

1
12

High 0.17 1
12

1
12

1
6
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Table 2: Parametric components of the pension systems

Case Retirement incentives Replacement rate Capitalization index
λ(JR) ψ(p) It

Baseline (US)

{
1 + λp(JR − JN) if JR < JN ,

1 + λr(JR − JN) if JR ≤ JN



0.90 If p ≤ ȳt
6
,

0.32 + 0.58
6

ȳt
p

If ȳt
6
< p < ȳt,

0.15 + 1.60
6

ȳt
p

If ȳt < p < 2ȳt,

3.40
6

ȳt
p

If 2ȳt < p.

ȳt+1/ȳt

Counterfactual

{
1 + λp(JR − JN) if JR < JN ,

1 + λr(JR − JN) if JR ≤ JN
ψ = 0.385 ȳt+1/ȳt
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Table 3: Early retirement penalties and delayed retirement credits

Year of birth Credit per year Penalty per year† Normal retirement age
(s) λr λp JN

1917-24 3.0% 6.6% 65
1925-26 3.5% 6.6% 65
1927-28 4.0% 6.6% 65
1929-30 4.5% 6.6% 65
1931-32 5.0% 6.6% 65
1933-34 5.5% 6.6% 65
1935-36 6.0% 6.6% 65
1937 6.5% 6.6% 65
1938 6.5% 6.6% 65+2/12
1939 7.0% 6.6% 65+4/12
1940 7.0% 6.6% 65+6/12
1941 7.5% 6.6% 65+8/12
1942 7.5% 6.6% 65+10/12
1943-54 8.0% 6.6% 66
1955-59 8.0% 6.6% 66+ 2

12
(s− 1954)

1960- 8.0% 6.6% 67

Source: US Social Security Administration (SSA). Notes: † The yearly penalty
rate three years before the normal retirement age is 5%.
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Table 4: Model economy parameters

Parameter Symbol Value

Preferences
Intertemp. elasticity of substitution σ 0.500
Consumption weight φ 0.401
Subj. discount factor β 1.000

Returns to scale in education γ 0.650
Initial rate of return to education ϕ {0.15;0.16;0.17}
Human capital depreciation δh 0.008

Technology
Capital share α 0.33
Capital depreciation rate δ 0.05
Labor-aug. tech. progress growth rate gA 0.02

Government

Mandatory retirement age JR 65

Weight of current income on pensions %j

{
0 j ≤ JR − 35

1/35 JR − 35 < j ≤ JR

Notes: Parameter values withdrawn from Ludwig et al. (2012).
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Table 5: Net wealth transfer to present value of lifetime labor income ratio at
age 15: Birth cohort 2000

Ability Private wealth Social security Net
level transfer wealth wealth

(WT) (SSW) transfer
I II III=I+II

Baseline
Low 9.21% -8.09% 1.12%
Average 8.51% -8.41% 0.10%
High 8.03% -8.65% -0.62%

Flat replacement
Low 9.58% -9.65% -0.07%
Average 8.31% -9.34% -1.03%
High 7.23% -9.06% -1.83%

Note: Private wealth transfer and social security wealth are defined, respectively, as

WT2015,15(θ) =

3∑
µ=1

Ω−1∑
j=15

tr2000+j,j(θ, µ)∏j
z=15R2000+z

N2000+j,j(θ, µ)

N2000+j,j(θ)
,

SSW2015,15(θ) =

3∑
µ=1

Ω−1∑
j=66

b2000+j,j(θ, µ)∏j
z=15R2000+z

N2000+j,j(θ, µ)

N2000+j,j(θ)
−

65∑
j=15

τ2000+jy2000+j,j(θ, µ)∏j
z=15R2000+z

N2000+j,j(θ, µ)

N2000+j,j(θ)

 .
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