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Abstract 

Family and twin studies suggest that up to 50% of individual differences in human fertility 

within a population might be heritable. However, it remains unclear whether the genes 

associated with fertility outcomes such as number of children ever born (NEB) or age at first 

birth (AFB) are the same across geographical and historical environments. By not taking this 

into account, previous genetic studies implicitly assumed that the genetic effects are constant 

across time and space. We conduct a mega-analysis applying whole genome methods on 

31,396 unrelated men and women from six Western countries. Across all individuals and 

environments, common single-nucleotide polymorphisms (SNPs) explained only  ~4% of the 

variance in NEB and AFB. We then extend these models to test whether genetic effects are 

shared across different environments or unique to them. For individuals belonging to the same 

population and demographic cohort (born before or after the 20
th

 century fertility decline), 

SNP-based heritability was almost five times higher at 22% for NEB and 19% for AFB. We 

also found no evidence suggesting that genetic effects on fertility are shared across time and 

space. Our findings imply that the environment strongly modifies genetic effects on the tempo 

and quantum of fertility, that potentially ongoing natural selection is heterogeneous across 

environments, and that gene-environment interactions may partly account for missing 

heritability in fertility. Future research needs to combine efforts from genetic research and from 

the social sciences to better understand human fertility. 

 

 

 

 

 



 3 

Significance statements 

Fertility behavior – such as age at first birth and number of children – varies strongly 

across historical time and geographical space. Yet, family and twin studies, which suggest that 

up to 50% of individual differences in fertility are heritable, implicitly assume that the genes 

important for fertility are the same across both time and space. Using molecular genetic data 

(SNPs) from over 30,000 unrelated individuals from six different countries, we show that 

different genes influence fertility in different time periods and different countries, and that the 

genetic effects consistently related to fertility are presumably small. The fact that genetic 

effects on fertility appear not to be universal could have tremendous implications for research 

in the area of reproductive medicine, social science and evolutionary biology alike. 
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 1 

Introduction 2 

Twin and family studies from Western countries show that genetic factors may explain up to 3 

50% of the differences in human fertility outcomes such as number of children ever born 4 

(NEB) or age at first birth (AFB) within a population (1–8). It remains unknown, however, 5 

whether the same genes are important for fertility across different environments or whether 6 

gene-environment interaction modifies genetic effects on fertility. This is a vital question for at 7 

least three reasons. First, the most successful and widely-used design to detect the approximate 8 

location of genetic variants associated with complex traits is a meta-analysis of genome-wide 9 

association studies (GWAS) from multiple populations (9). This approach assumes genetic 10 

effects on a trait to be universal across environments. However, concerning fertility, this 11 

requires investigation given that environmental upheavals such as the introduction of the pill or 12 

educational expansion have substantially changed fertility behavior in the recent past (10, 11). 13 

A second and interrelated point is that studies resorting to molecular genetic data to quantify 14 

heritability as the variance in a trait explained by genetic variance result in lower estimates than 15 

family studies (12) – and this is true also in fertility research (1, 2, 7, 13, 14). This discrepancy 16 

might, amongst other reasons, be a consequence of the interaction between environment and 17 

genes. Family studies are conducted amongst members of the same populations, whereas for 18 

example GWAS use data from individuals across populations. If genes can explain variance in 19 

fertility within but not between populations, heritability estimates based on different 20 

populations will be smaller than within populations (12, 15). Third, Fisher’s fundamental 21 

theorem of natural selection predicts at environmental equilibrium (close to) zero additive 22 

genetic effects on fitness-related traits such as fertility, because genes that reduce fitness are 23 

expected to have been passed on to the next generation to a lesser extent (16). Nevertheless, 24 
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additive genetic influences on fertility are well established and a potential explanation is that 1 

the genes that are important for fertility differ across environments (17). 2 

Twin and family designs cannot be used to answer the question as to whether different 3 

genes are important for fertility across populations or birth cohorts since relatives usually live 4 

in the same country and twins always have the same age. However, with the advent of 5 

molecular genetic data and complementary analytical techniques and software, it has become 6 

possible to examine the genetic material of unrelated individuals across different (historical) 7 

populations and therefore the unique possibility exists to test whether the same genes influence 8 

a trait across diverse environments (18–22). In this study, we exploit these advances for the 9 

first time, by empirically assessing whether genetic effects on fertility differ across 10 

geographical and historical environments.  11 

We pooled a series of large datasets consisting of 31,396 unrelated (~ second cousin, 12 

IBS<0.05, see Material and Methods) genotyped men (n = 10,489) and women (n = 20,907) 13 

from six countries and seven study populations for analysis (for the US: HRS, ARIC; for the 14 

Netherlands: LifeLines; For Sweden: STR/SALT; for Australia: QIMR; for Estonia: EGCUT; 15 

for the UK: TwinsUK) who are assumed to have completed their reproductive period 16 

(𝑎𝑔𝑒𝑚𝑒𝑛 > 50; 𝑎𝑔𝑒𝑤𝑜𝑚𝑒𝑛 > 45 ). We first conducted a mega-analysis, which is based on 17 

individual information from different populations in contrast to a meta-analysis that uses 18 

summary statistics of analyses conducted within populations, and applied whole genome 19 

methods (20, 21) using GCTA software (18) to estimate SNP-heritability ( ℎ𝑆𝑁𝑃
2 ). SNP-20 

heritability is the proportion of total phenotypic variance that is explained by common genome-21 

wide SNPs. Based on a previous study using data from women from the Netherlands and the 22 

UK, we expect ℎ𝑆𝑁𝑃
2  to be around 0.10 for number of children ever born and around 0.15 for 23 

AFB (23).  24 
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Second, to investigate gene-environment interaction, we follow two strategies: the first 1 

one consists in fitting multiple genetic relatedness matrices in our model, one global matrix for 2 

all individuals and more matrices indicating whether individuals lived in the same population 3 

and/or were part of the same birth cohort. The global matrix estimates the effects genes have 4 

across all environments, whereas the population/birth cohort specific matrices estimate context 5 

specific genetic effects (see 18 and Material and Methods for our specifications). The second 6 

strategy consists in fitting bivariate genetic models to investigate the moderating effect of the 7 

postponement transition on genetic effects on fertility (see 22, 24 and Material and Methods for 8 

our specifications). This model allows us to estimate ℎ𝑆𝑁𝑃
2  separately for different birth cohorts 9 

as well as the genetic correlation across them. To maximize power in these models, we divided 10 

all populations into two demographic birth cohorts. A central turning point in the reproductive 11 

environment of the 20
th

 century occurred when AFB experienced a massive postponement of 12 

up to 4-5 years in nearly all advanced societies, the so-called ‘postponement transition’ (25), or 13 

Second Demographic Transition (10, 11, 26, 27). The primary reasons proposed for fertility 14 

postponement have been women’s increased educational attainment and their employment in 15 

the labour force, triggered by factors such as the availability of effective contraception (10, 11). 16 

Cultural transformations in terms of sexual freedom, family planning and the timing and role of 17 

children are also central (26, 27). To investigate the moderating effect of fertility postponement 18 

we divide individuals into birth cohorts born either before or after this massive postponement in 19 

AFB in the past century (10, 11, 25, 28).  20 

Results 21 

Descriptive findings 22 

The descriptive statistics for NEB and AFB for all populations under study (LifeLines, 23 

TwinsUK, STR, Estonia, HRS, ARIC and QIMR) as well as the pooled data separate for men 24 
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and women can be found in Supplementary Table S1. The participants were born between 1903 1 

and 1967. The mean number of children per woman is 2.0 in Estonia, Sweden and the UK and 2 

3.3 in Australia. For men, the lowest reported number of children is in Sweden and Estonia 3 

with around 1.9 children per man and is the highest in Australia at around 3.4. AFB was 4 

available for the Netherlands, UK, Sweden, Estonia and Australia. For both men and women, it 5 

was lowest in Estonia with an average of 24.6 for women and 27.7 for men and highest in 6 

Australia with 26.7 and 29.8 for men. Individuals who start reproducing at a later age have 7 

fewer children, with correlations between NEB and AFB ranging between -0.24 (Netherlands) 8 

and -0.38 (Australia; Supplementary Table S2). This pattern is less consistent across countries; 9 

for example in Australia, the highest fertility levels are observed, despite having the highest 10 

AFB. This reflects heterogeneity in fertility levels across countries with Australia having 11 

traditionally higher fertility levels than other Western countries (for a trend comparison of the 12 

total fertility rate across countries see Supplementary Figure S1). 13 

Demographic Trends 14 

Figure 1 shows the trends in AFB during the 20
th

 century for the countries in our study 15 

based on population data if available (see Material and Methods for details). We observe the 16 

well-established U-shaped pattern of AFB of a falling AFB in the first half of the 20
th

 century 17 

followed by a turning point and upturn in the trend of AFB towards older ages. This 18 

postponement transition in fertility timing was accompanied by a strong drop in completed 19 

fertility in most countries (29).  20 

Sociocultural and technological changes, such as the introduction of effective 21 

contraception, educational expansion or changing norms in reference to sexuality and family 22 

planning, have largely driven these trends (10, 11). These environmental changes occurred in 23 

specific time periods in each country. In order to test for gene-environment interaction in our 24 
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analyses, we split the data into birth cohorts born before and after the turning point of fertility 1 

postponement to reduce environmental heterogeneity amongst the individuals who are 2 

members of the same birth cohort. This turning point differs across countries (Figure 1) with 3 

Australia having the earliest start of postponing (1939) and Estonia the latest (1962; see 4 

Supplementary Information Table S3 for all turning points and details). Differences in the onset 5 

of the postponement transition are well established and can be due to, for example, political 6 

reasons. This is the case of Estonia, for example, where early AFB had been strongly promoted 7 

by political incentives when it still was part of the Soviet Union in time periods prior to 1990 8 

(30). 9 

[Figure 1 here] 10 

Genetic effects on fertility from the whole genome 11 

Model 1: SNP heritability of AFB and NEB across environments  12 

Not taking environmental differences into account, SNP based heritability (h
2

SNP) is 13 

significant and low for number of children ever born and age at first birth (Table 1). For NEB, 14 

h
2

SNP is 0.038 (SE = 0.0097, p-value = 2.0x10
-5

) and for AFB it is 0.053 (SE = 0.019 p-value = 15 

0.0020; these estimates are based on the full genetic relatedness matrix - see Material and 16 

Methods). These findings mean that around four per cent of the variance in NEB and around 17 

five per cent in AFB can be attributed to common, additive genetic effects in the pooled data. 18 

These estimates are much lower than those reported in other studies (23). 19 

Model 2: Genes x population interaction (g x p) 20 

A potential reason to explain why estimates are lower than expected is that the SNPs 21 

important for fertility have different effects across environments. Model 2 therefore adds an 22 

interaction term to Model 1 that captures the influence of genetic variance on fertility only 23 

within populations. The gene-population interaction models for NEB and AFB show that 24 
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shared genetic effects across populations are much lower than genetic effects within 1 

populations. With respect to NEB, the shared genetic effects across populations are negligible  2 

[Table 1 here] 3 

(0.0070, SE = 0.011, p-value = 0.26), whereas within populations additional additive effects are 4 

estimated to be 0.15 (SE = 0.024, p-value = 6.0 x10
-12

). The same applies to AFB, where shared 5 

genetic effects are estimated to be only 0.024 (SE = 0.022, p-value = 0.14), whereas the within 6 

population effect is 0.10 (SE = 0.039, p-value=0.0037; Table 1; Model 2). These results show 7 

that there is little overlap in SNPs that influence fertility across populations, and that most of 8 

the SNPs influencing fertility are population specific.  9 

Model 3: Genes x demographic birth cohort (g x d) 10 

Similar to the Model 2, in which we modeled population specific effects, we also examined 11 

whether there were genetic influences on fertility that were specific to birth cohorts. We find 12 

that there is additional genetic variance explanation for individuals who live in the same 13 

demographic cohort. While h
2

SNP for all birth cohorts is estimated at zero for both NEB (SE = 14 

0.013, p-value = 0.50) and AFB (SE = 0.03, p-value = 0.35), for individuals living in the same 15 

demographic cohort there is a significant additional genetic variance component of 0.097 (SE = 16 

0.017, p-value = 3.3x10
-16

) for NEB and 0.084 (SE = 0.031, p-value = 4.6 x10
-4

) for AFB 17 

(Table 1; Model 3). Thus, similar to what we observed for the different populations, we find 18 

that SNPs influencing fertility traits are specific to cohort.  19 

Model 4: Genes x population x demographic birth cohort (g x p x d) 20 

Including a gene-environment interaction term that takes into account both the 21 

population and the demographic cohort simultaneously (Model 4), we observe that for NEB the 22 

interaction with demographic cohort (0.064, SE = 0.020, p-value = 5.9x10
-4

) and the interaction 23 

with population and demographic cohorts (0.085, SE = 0.045, p-value = 0.0030) are significant. 24 
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This suggests that living in the same demographic cohort increases h
2

SNP independent of 1 

whether individuals live in the same population, but rather living in the same population and 2 

the same demographic period additionally increases h
2

SNP. For AFB h
2

SNP is only significantly 3 

different from zero for individuals living in the same population and demographic cohort (0.18, 4 

SE = 0.077, p-value = 0.0032). 5 

Overall SNP based heritability for each model  6 

Subsequently, overall heritability estimates were calculated as the sum of the different 7 

components of each model to examine the increase in heritability estimates when including the 8 

different interaction terms (See Figure 2 corresponding to Supplementary Table S4). The 9 

overall h
2

SNP for NEB increases almost fivefold, from 0.04 (SE = 0.01; Model 1) to 0.22 (SE = 10 

0.026), when population and demographic cohort are taken into account. For AFB, the trend is 11 

very similar, with h
2

SNP of 0.053 (SE = 0.019) in the baseline Model 1 and 0.19 (SE = 0.039) in 12 

the genes x population x demographic cohort interaction model, when population and 13 

demographic cohort are taken into account. 14 

[Figure 2 here] 15 

Sensitivity analysis: Genes x Sex  16 

The analyses presented are based on pooled datasets of men and women. However, two 17 

data sources contain (almost) only women (TwinsUK and ARIC). To the extent that different 18 

genes influence fertility across sexes, this might drive the observed differences across 19 

populations. We therefore conducted a sensitivity analysis extending Model 3 to a genes x 20 

population x sex interaction model. We find that considering sex-differences does not 21 

significantly improve the model fit (p-value for AFB 0.5, for NEB 0.093) and therefore are 22 

confident that our findings do not result from sex-differences (Supplementary Table S6).  23 

Bivariate analysis 24 
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We complementarily estimated a bivariate model based on Model 2 and splitting data 1 

for demographic cohort (see Material and Methods), which allows us to estimate genetic effects 2 

across (𝜎𝑔
2) and within (𝜎𝑔𝑥𝑝

2 ) populations separately for different demographic birth cohorts 3 

and investigate whether genetic effects are correlated across demographic birth cohorts. Table 2 4 

shows that 𝜎𝑔𝑥𝑝
2  estimates for NEB within populations are significant for both demographic 5 

cohorts before (𝜎𝑔𝑥𝑝
2 /𝜎𝑝

2 = 0.15, SE = 0.039, p-value = 9.6x10
-6

) and after (𝜎𝑔𝑥𝑝
2 /𝜎𝑝

2 = 0.13, SE 6 

= 0.048, p-value = 0.0010) fertility postponement. It furthermore shows a positive correlation 7 

of genetic effects on NEB across demographic cohorts within populations (1.00, SE = 0.35, p-8 

value = 1.3x10
-5

). In Model 4 of Table 1, this remained suggestive, since the genetic effects 9 

within populations but shared across demographic cohorts (𝜎𝑔𝑥𝑝
2 /𝜎𝑃

2 ) were non-significant 10 

(0.073, SE = 0.036, p-value = 0.18).  11 

[Table 2 here] 12 

The bivariate model for the AFB finds some evidence that in both demographic cohorts 13 

genetic effects are observed (before fertility postponement 0.099, SE = 0.073, p-value = 0.083; 14 

after fertility postponement 0.13, SE = 0.074, p-value = 0.070), although these effects were 15 

marginally significant. However, there is no evidence that genetic effects correlate across 16 

demographic birth cohorts (0.11, SE = 0.59, p-value = 0.27), which is well in line with the null-17 

estimate 𝜎𝑔𝑥𝑝
2 /𝜎𝑃

2 (0.00, SE = 0.062, p-value = 0.50).  18 

Genetic effects shared across all populations (𝜎𝑔
2) are only significant for NEB and birth 19 

cohorts born before fertility postponement (𝜎𝑔
2/𝜎𝑃

2 = 0.031, SE = 0.018, p-value 0.042) while 20 

non-significant for younger cohorts and for AFB. Genetic correlations are therefore not 21 

interpreted. 22 

 23 
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Discussion 1 

Using data from seven populations and six countries, we demonstrate that genetic 2 

effects on fertility outcomes –number of children ever born (NEB) and age at first birth (AFB) 3 

– differ across temporal and spatial environments. For NEB, genetic effects within populations 4 

are stronger than across populations, but correlate between individuals who were born before or 5 

after the turning point in fertility postponement of the 20
th

 century. For AFB, genetic effects are 6 

only significant if individuals live in the same demographic cohort and the same population. 7 

The full gene-environment interaction model (Model 4) as well as the bivariate analyses 8 

provide no evidence for shared genetic effects for each phenotype across populations and 9 

demographic birth cohorts. Our results show that different SNPs are associated with fertility 10 

traits in different populations and birth cohorts, and there are hardly any genetic effects that are 11 

consistently related to these traits across populations and cohorts. Our results uncover a strong 12 

interplay of genetic and environmental factors influencing human fertility.  13 

Quantitative geneticists have been puzzled by low heritability estimates based on 14 

GWAS findings or even whole-genome estimates such as GREML model as we apply it in the 15 

current study, describing the phenomenon of ‘missing heritability’ (12). Previous attempts to 16 

explain missing heritability partly by non-additive genetic effects remain empirically untested 17 

(31) or find only little support (32). Our findings of strong gene-environment interaction imply 18 

first that the detection of genetic variants associated with fertility traits is a major challenge 19 

using meta-analyses of GWAS on individuals from different populations. Likewise, predictions 20 

out of the discovery sample might be difficult, because discovered SNPs might have different 21 

effects in different samples. Second, they imply that lower heritability estimates from GWAS 22 

studies compared to GREML approaches or family studies might be due to the fact that genetic 23 

effects are (to some extent) not universal but context specific. In the model considering gene-24 
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environment interaction across population and demographic cohort, we report heritability 1 

findings of 0.22 for NEB and 0.19 for AFB (see Figure 2 and Supplementary Information Table 2 

S4), which are fourfold higher than across all contexts and approach heritability estimates from 3 

family models (2, 14). It is therefore central to understand the cultural and environmental 4 

factors that interact with human fertility as well as their origins across (family) environments in 5 

order, for example, to define missing heritability or validate the findings from twin studies. It is 6 

to be noted that our findings are probably fostered by the strong behavioural and social nature 7 

of fertility, which might be more sensitive to cultural and societal heterogeneity than for 8 

example morphological traits. A recent investigation by Yang et al. (33) shows that missing 9 

heritability for the anthropometric traits height and body mass index is negligible when using 10 

whole genomic sequencing data in a new GREML model and assuming that family models 11 

overestimate heritability. 12 

Demonstrating that genetic effects on fertility outcomes differ across environments, our 13 

study substantially contributes to the current knowledge on the genetic architecture of human 14 

reproduction. Previous twin studies show for several countries and birth cohorts that fertility 15 

outcomes such as NEB and AFB are genetically influenced (1, 2). However, it remained 16 

unclear whether the same genes are associated with fertility across environments. Using 17 

molecular genetic data and GREML methods (18, 20, 21), we were able to relate the genetic 18 

material of individuals across environments and found that common SNPs explain substantially 19 

more variance within than between countries and birth cohorts for fertility traits. 20 

Previous twin and family studies furthermore suggest that the level of heritability of 21 

fertility traits can change across time and space (5, 7, 34, 35). However, these differences could 22 

not be statistically validated. In the current study, we proposed a multi-matrix approach to test 23 

for gene-environment interaction but also applied bivariate GREML models across birth 24 

cohorts (22, 24). Bivariate GREML models allow estimating SNP-heritability within two 25 
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independent samples was well as the genetic correlation across them. We cannot confirm the 1 

suggestion that the level of heritability changed over time, but find that heritability levels are 2 

comparable before and after the strong fertility postponement in the past century.  3 

Different levels of heritability have also been reported across countries (2). Our multi-4 

matrix GREML approach distinguishes between pairs of individuals who are living in the same 5 

or in different populations. The resulting within population estimate is therefore an average 6 

across all populations and we cannot compare different levels of heritability across populations. 7 

A more desirable study design would be a multivariate genetic modelling approach as we 8 

presented it in a bivariate design to investigate differences across demographic birth cohorts. 9 

However, this approach was not possible in our study due to small sample sizes in each 10 

population and a consequent lack of statistical power (22), but might become feasible in the 11 

future with better data availability. 12 

Our findings are of interest to scientists within the medical, biological and social 13 

sciences alike (1, 2, 36, 37). Research has successfully identified genetic variants associated 14 

with reproductive diseases and traits (37). However, it remains unknown how these affect 15 

realized fertility. We find no evidence that genetic effects underlying fertility in one country 16 

predict fertility outcomes in another one. Genetic effects on fertility outcomes are rather 17 

strongly dependent on an individual’s environment. Recently, social scientists have made large 18 

efforts to integrate molecular genetics into their research (1, 2, 23, 34, 38–42). However, when 19 

it comes to reproductive health, environmental factors are also likely to be critical in 20 

understanding how genetic factors are modified in relation to fecundity and infertility.   21 

For evolutionary biologists, our findings have at least two important implications. First, 22 

the number of children ever born has been used as a proxy for fitness, given the diminishing 23 

child mortality rate in contemporary societies (4, 23, 36). Additive genetic variance therefore 24 

indicates natural selection under environmental equilibrium within populations: if all else 25 
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equal, genes that lead to a higher number of offspring will have a higher frequency in future 1 

generations. Due to natural selection, Fisher predicted additive genetic variance in fertility to be 2 

(close to) zero in the absence of gene environment interaction, since genes that reduce fitness 3 

are passed on to the next generation to a lesser extent thereby reducing their frequencies (16). 4 

Nevertheless, we find significant additive genetic influences on fitness traits such as NEB and 5 

AFB – substantial yet lower than heritabilities observed for morphological traits such as height 6 

(14, 15, 23, 43). Finding significant genetic influences on this these proxies of fitness suggests 7 

that, along with sociocultural changes surrounding fertility, genetic variants under selection 8 

have also changed (for review see 1, for review see 2, 5, 7, 17, 34, for comment see 44–46). 9 

Gene-environment interaction can explain why we find additive genetic variance in fitness 10 

related traits despite natural selection. 11 

Second, previous research has uncovered an ongoing natural selection in contemporary 12 

societies (3, 4, 23, 47, 48) and even attempted to forecast changes in for example height and 13 

blood pressure across generations (4). For valid evolutionary predictions about observable 14 

changes in traits across generations due to natural selection, fertility needs to be consistently 15 

heritable, the same genes need to be under selection across generations and the direction of the 16 

selection needs be similar. Our results demonstrate moderate genetic influences on fertility 17 

within populations indicating potentially ongoing human evolution. However, this potential is 18 

delimited in at least two ways: First, genetic effects on fertility strongly differ across countries 19 

and therefore may lead to heterogeneity across human populations rather than to universal 20 

changes in humans. Second, the finding that genetic effects underlying proxies of fitness vary 21 

so markedly across time periods suggests that substantial caution is needed when inferring 22 

long-term evolutionary predictions. 23 

For social scientists, genetic influences had been originally thought of as biological 24 

constraints on human reproductive behavior (42). Yet some previous studies showed that 25 
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genetic predispositions may underlie decision making processes on fertility timing and 1 

motivation (6, 7, 49, 50). It has been suspected that genetically based behavioural and 2 

psychological traits have become more important than physiological ones in the recent past (6, 3 

8, 34, 51). This hypothesis remains to be tested, but our results confirm that genetic influences 4 

on fertility have evolved with social changes in the reproductive environment and therefore 5 

underscore the necessity to integrate social factors into genetic research on fertility.  6 

Overall, our study uncovers great challenges for investigations into the genetic 7 

architecture of fertility, which can only be overcome by interdisciplinary work between both 8 

social scientists and geneticists using ever larger datasets, with combined information from 9 

genetics and social sciences (36). 10 

 11 

Material & Methods 12 

Cohorts 13 

In this study we combined data from seven cohorts and six countries. For the US, we 14 

use data from ARIC, HRS, for Estonia from EGCUT, for Australia QIMR data from the 15 

Australia Twin and Family Register, for the Netherlands the LifeLines Cohort Study, for the 16 

United Kingdom TwinsUK and for Sweden the STR. All studies have received ethical 17 

approval. 18 

ARIC 19 

ARIC (Atherosclerosis Risk in Communities Study) is a community-based prospective cohort 20 

study of 15,792 adults, ages 45–64. Participants were identified by probability sampling from 21 

four U.S. communities (Forsyth County, North Carolina; Jackson, Mississippi; suburban 22 

Minneapolis, Minnesota; and Washington County, Maryland) and were enrolled between 1987 23 

and 1989 (52–54).  24 
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HRS 1 

The Health and Retirement Study (HRS) is an ongoing cohort study of Americans, with 2 

interview data collected biennially on demographics, health behavior, health status, 3 

employment, income and wealth, and insurance status. The first cohort was interviewed in 1992 4 

and subsequently every two years, with 5 additional cohorts added between 1994 and 2010. 5 

The full details of the study are described in (55). 6 

EGCUT  7 

Estonian data come from of the Estonian Genome Center Biobank, University of Tartu 8 

(EGCUT, www.biobank.ee), a population-based database which comprises the health, 9 

genealogical and genome data of currently more than 51,530 individuals (56). Each participant 10 

filled out a Computer Assisted Personal Interview including personal data (place of birth, 11 

place(s) of living, nationality etc.), genealogical data (family history, three generations), 12 

educational and occupational history and lifestyle data (physical activity, dietary habits, 13 

smoking, alcohol consumption, and quality of life).  14 

QIMR 15 

Data for Australia was received from the Queensland Institute for Medical Research 16 

(QIMR). The participants were drawn from cohorts of adult twin families that have taken part 17 

in a wide range of studies of health and well-being via questionnaire and telephone interview 18 

studies, and recruitment was extended to their relatives (parents, siblings, adult children and 19 

spouses).  20 

LifeLines Cohort Study  21 

The LifeLines Cohort Study (57) is a multi-disciplinary prospective population-based 22 

cohort study from the Netherlands, examining in a unique three-generation design the health 23 

and health-related behaviours of 167,729 persons living in the North of The Netherlands 24 

http://www.biobank.ee/
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including genotype information from more than 13,000 unrelated individuals.  It employs a 1 

broad range of investigative procedures in assessing the biomedical, socio-demographic, 2 

behavioural, physical and psychological factors which contribute to the health and disease of 3 

the general population, with a special focus on multi-morbidity and complex genetics. 4 

TwinsUK 5 

For the UK, we use data from TwinsUK, the largest adult twin registry in the country with 6 

more than 12,000 respondents (58). The TwinsUK Study recruited white monozygotic (MZ) 7 

and dizygotic (DZ) twin pairs from the TwinsUK adult twin registry, a group designed to study 8 

the heritability and genetics of age-related diseases (www.twinsuk.ac.uk). These twins were 9 

recruited from the general population through national media campaigns in the UK and shown 10 

to be comparable to age-matched population singletons in terms of clinical phenotype and 11 

lifestyle characteristics.  12 

STR 13 

The Swedish Twin Registry (STR) was first established in the late 1950s to study the 14 

importance of smoking and alcohol consumption on cancer and cardiovascular diseases whilst 15 

controlling for genetic propensity to disease. Between 1998 and 2002, the STR conducted 16 

telephone interview screening of all twins born in 1958 or earlier regardless of gender 17 

composition or vital status of the pair. This effort is known as Screening Across the Lifespan 18 

Twin study (SALT). A subsample of SALT (≈10,000) was genotyped as part of the TwinGene 19 

project (41, 59) and we use the this information in the current study. 20 

Fertility trends 21 

Aggregate data to describe country specific fertility trends have been obtained from the 22 

Human Fertility Database (HFD, http://www.humanfertility.org/cgi-bin/main.php) and the 23 

Human Fertility Collection (HFC, http://www.fertilitydata.org/cgi-bin/index.php) if available. 24 

http://www.twinsuk.ac.uk/
http://www.humanfertility.org/cgi-bin/main.php
http://www.fertilitydata.org/cgi-bin/index.php
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Both data collections are joint projects of the Max Planck Institute for Demographic Research 1 

(MPIDR) in Rostock, Germany and the Vienna Institute of Demography (VID) in Vienna, 2 

Austria. The projects provide access to detailed and high-quality data on period and cohort 3 

fertility. The HFD is entirely based on official vital statistics. The HFC incorporates a variety 4 

of valuable fertility data from diverse, not necessarily official, data sources. All data are freely 5 

available after registration. We focused on fertility information for cohorts that was aggregated 6 

for individuals older than 45. 7 

For the UK, official data on birth order have only been collected within marriage, and 8 

might be biased. We therefore relied on estimates from the Office for National Statistics, 9 

Cohort fertility, Table 2. Available at: http://www.ons.gov.uk/ons/publications/re-reference-10 

tables.html?edition=tcm%3A77–2631333. For Estonia, data on completed reproduction by age 11 

45 was only available until the year 1962. For subsequent cohorts, however, there was an 12 

estimate of AFB available based on official statistics at the age of 40. For Australia, no official 13 

data on a time series of cohort specific AFB was available and the trends are based on the data 14 

used for analysis in this study. 15 

Genotypes 16 

We received genotype data from all cohorts, which we imputed according to the 1000 17 

genome panel – except for TwinsUK from which we already received the imputed data.  18 

Genetic-relatedness-matrix (GRM) 19 

To estimate the genetic relatedness-matrix (GRM) the HapMap3 imputation panel was 20 

used as a reference set as it was optimized to capture common genetic variation in the human 21 

genome (60).We selected HapMap3 SNPs with an imputation score larger than 0.6. For quality 22 

control (QC), we excluded the SNPs with a larger missing rate than 5% after merging, lower 23 

minor allele frequency than 1% and which failed the Hardy-Weinberg equilibrium test for a 24 
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threshold of 10−6. We merged the datasets subsequently applying QC again after merging each 1 

data set. 847,278 SNPs could be utilized to estimate the GRM between individuals. We used 2 

the software Plink (19) for the quality control and merging of the datasets and GCTA (18) to 3 

estimate the genetic relatedness matrix 4 

The GRM 𝐴𝑖𝑘 is estimated for each pair of individuals j and k:  5 

𝐴𝑗𝑘 =
1

𝑁
∑

(𝑥𝑖𝑗 − 2𝑝𝑖)(𝑥𝑖𝑘 − 2𝑝𝑖)

2𝑝𝑖(1 − 𝑝𝑖)

𝑁

𝑖=1

 

where 𝑥𝑖𝑗 and 𝑥𝑖𝑘 is the number of copies of the reference allele for the i
th 

SNP of the j
th

  or k
th

 6 

individual and 𝑝𝑖 is the frequency of the reference allele and N the number of SNPs. If two 7 

individuals had a higher genetic relatedness than 0.05, one was excluded from the analyses to 8 

avoid bias due to environmental confounders amongst close relatives.  9 

 10 

Phenotypes 11 

Number of children ever born was available for all cohorts, but in ARIC and TwinsUK, 12 

however, only for women. NEB measures number of children a woman has given birth to or a 13 

man has fathered. It was either directly asked or we constructed it from questions on the date of 14 

birth of each child. 15 

 The measure is not perfectly harmonized across cohorts because some questionnaires 16 

explicitly exclude still-births (HRS, ARIC) while others remain undefined (TwinsUK asked in 17 

some waves: “How many children have you given birth to?”; EGCUT asked: “Do you have any 18 

biological children?”, and subsequently: “Fill in their names, gender and date of birth). In STR, 19 

LifeLines, QIMR as well as most of the waves of the TwinsUK, information on both the date of 20 

birth and death of the child was asked. In LifeLines and TwinsUK, we compared the live birth 21 

measure with number of children ever born and, as expected, given the diminishing mortality 22 



 21 

rate in both datasets, less than 0.2% of the children had not reached reproductive age and the 1 

correlation of number of children ever born and number of children reaching reproductive age 2 

was >0.98. We therefore expect no large bias due to the fact that in some countries still-births 3 

are excluded. 4 

The questionnaires were furthermore heterogeneous in the maximum number of 5 

children that could be named. However, within each cohort, the maximum number of children 6 

has never been named more often than in 0.5 per cent of the cases and we do not anticipate that 7 

our results are influenced by this. 8 

Information on AFB was available in all cohorts except for ARIC and the HRS. It was 9 

asked directly ( in TwinsUK) or was constructed using the date of birth of the oldest child and 10 

the year of birth of the respondent. 11 

Since fertility is strongly age dependent, we focus on women only with completed 12 

fertility history in reference to the phenotype. In general, the end of women’s reproductive 13 

lifespan occurs around the age of 45 and for men at the age of 50, thus, we only included 14 

individuals beyond those ages in our analyses. Furthermore, in vitro fertilization (IVF) – often 15 

related to twinning and multiple births – can bias results if IVF compensates genetically based 16 

infertility. However, in our TwinsUK sample, only 60 women reported using IVF, who we did 17 

not include in the final analyses. 18 

For all models, both phenotypes were standardized (Z-transformed) by cohort, year of 19 

birth and sex. 20 

GREML Models 21 

Common SNP heritability estimates (Model 1) 22 
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The genetic component underlying a trait is commonly quantified in terms of SNP-1 

heritability (ℎ𝑆𝑁𝑃
2 ) as the proportion of the additive genetic variance explained by common 2 

SNPs across the genome over the overall phenotypic variance (𝜎𝑃
2) of the trait: 3 

ℎ𝑆𝑁𝑃
2 =

𝜎𝑔
2

𝜎𝑃
2.   4 

The phenotypic variance is the sum of additive genetic and environmental variance, i.e. 5 

𝜎𝑃
2 = 𝜎𝑔

2 + 𝜎𝑒
2  where 𝜎𝑔

2  is the additive genetic variance explained by all SNPs across the 6 

genome and 𝜎𝑒
2 is the residual variance.   7 

The methods we applied have been detailed elsewhere (18, 20–22, 24). Briefly, we 8 

applied a linear mixed model  9 

 𝐲 =  𝑿𝜷 + 𝐠 + 𝐞  10 

 11 

where y is an Nx1 vector of dependent variables, N is the sample size, β is a vector for fixed 12 

effects of the overall mean (intercept), g is the Nx1 vector with each of its elements being the 13 

total genetic effect of all SNPs for an individual, and e is an Nx1 vector of residuals. The 14 

variance covariance matrix of the observed phenotypes is: 15 

𝐕 = 𝐀𝜎𝑔
2 + 𝐈𝜎𝑒

2 

 16 
 17 

We have g~  N(0, 𝐀𝜎𝑔
2) and e~ N(0, 𝐈𝜎𝑒

2), 𝐀 is the genetic relationship matrix (GRM) 18 

estimated from SNPs and 𝐈 is an identity matrix. The variance components are estimated using 19 

the restricted maximum likelihood (REML) approach.  20 

 21 

Genes x Population (Model 2) 22 
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The genes x demographic birth cohort interaction model is a joint model estimating global 1 

genetic effects for the fertility traits, effective between and within samples (𝜎𝑔
2 ) and the 2 

averaged additional genetic effects within cohorts (𝜎𝑔𝑥𝑝
2 ): 3 

𝐕 = 𝐀𝜎𝑔
2 + 𝐀𝐠𝐱𝐩𝜎𝑔𝑥𝑝

2 + 𝐈𝜎𝑒
2 

where A is the genetic relatedness matrix and 𝐀𝐠𝐱𝐩 is a matrix only with values for pairs of 4 

individuals within populations 1-7: 5 

𝐀 =

[
 
 
 
 
 
 
 
 
𝐴𝑝1𝑝1

𝐴𝑝1𝑝2

𝐴𝑐1𝑝3

𝐴𝑐1𝑝4

𝐴𝑐1𝑝5

𝐴𝑝1𝑝6

𝐴𝑝1𝑝7

𝐴𝑝2𝑝1

𝐴𝑝2𝑝2

𝐴𝑝2𝑝3

𝐴𝑝2𝑝4

𝐴𝑝2𝑝5

𝐴𝑝2𝑝6

𝐴𝑝2𝑝7

𝐴𝑝3𝑝1

𝐴𝑝3𝑝2

𝐴𝑝3𝑝3

𝐴𝑝3𝑝4

𝐴𝑝3𝑝5

𝐴𝑝3𝑝6

𝐴𝑝3𝑝7

𝐴𝑝4𝑝1

𝐴𝑝4𝑝2

𝐴𝑝4𝑝3

𝐴𝑝4𝑝4

𝐴𝑝4𝑝5

𝐴𝑝4𝑝6

𝐴𝑝4𝑝7

𝐴𝑝5𝑝1

𝐴𝑝5𝑝2

𝐴𝑝5𝑝3

𝐴𝑝5𝑝4

𝐴𝑝5𝑝5

𝐴𝑝5𝑝6

𝐴𝑝5𝑝7

𝐴𝑝6𝑝1

𝐴6𝑝2𝑝

𝐴𝑝6𝑝3

𝐴𝑝6𝑝4

𝐴𝑝6𝑝5

𝐴𝑝6𝑝6

𝐴𝑝6𝑝7

𝐴𝑝7𝑝1

𝐴𝑝7𝑝2

𝐴𝑝7𝑝3

𝐴𝑝7𝑝4

𝐴𝑝7𝑝5

𝐴𝑝7𝑝6

𝐴𝑝7𝑝7]
 
 
 
 
 
 
 
 

 

 6 

𝐀𝒈𝒙𝒑 =

[
 
 
 
 
 
 
𝐴𝑝1𝑝1

0
0
0
0
0
0

0
𝐴𝑝2𝑝2

0
0
0
0
0

0
0

𝐴𝑝3𝑝3

0
0
0
0

0
0
0

𝐴𝑝4𝑝4

0
0
0

0
0
0
0

𝐴𝑝5𝑝5

0
0

0
0
0
0
0

𝐴𝑝6𝑝6

0

0
0
0
0
0
0

𝐴𝑝7𝑝7]
 
 
 
 
 
 

 

 7 

Genes x Demographic birth cohort (Model 3)  8 

The genes x demographic birth cohort interaction model is a joint model estimating the 9 

universal genetic effects for the traits, effective between and within samples (𝜎𝑔
2) and the 10 

averaged additional genetic effects within defined birth cohorts (𝜎𝑔𝑥𝑏
2 ): 11 

𝐕 = 𝐀𝜎𝑔
2 + 𝐀𝐠𝐱𝐝𝜎𝑔𝑥𝑑

2 + 𝐈𝜎𝑒
2 

whereas A is the genetic relatedness matrix and 𝐀𝐠𝐱𝐝 is a matrix only with values for pairs of 12 

individuals within the same demographic birth cohorts b1-2: 13 



 24 

𝐀𝐠𝐱𝐛 = [
𝐴𝑑1𝑑1

0
0

𝐴𝑑2𝑑2
]  1 

 2 

Genes x Population x Demographic birth cohorts (Model 4) 3 

Finally, we applied a model including both interaction terms from above and an additional 4 

interaction term 𝐀𝐠𝐱𝐜𝐱𝐛 which is 0 for all pairs of individuals living in different time periods or 5 

in different cohorts 6 

𝐕 = 𝐀𝜎𝑔
2 + 𝐀𝐠𝐱𝐩𝜎𝑔𝑥𝑝

2 + 𝐀𝜎𝑔𝑥𝑑
2 + 𝐀𝐠𝐱𝐩𝐱𝐝𝜎𝑔𝑥𝑝𝑥𝑑

2 + 𝐈𝜎𝑒
2 

whereas A is the genetic relatedness matrix,  𝐀𝐠𝐱𝐩 is a matrix only with values for pairs of 7 

individuals within populations 1-7 (Model 2), 𝐀𝐠𝐱𝐝 is a matrix only with values for pairs of 8 

individuals within the same demographic periods b1-2 (Model 3) and 𝐀𝐠𝐱𝐩𝐱𝐝  is a matrix only 9 

with values for pairs of individuals with both the same demographic periods and the same 10 

populations. 11 

Bivariate Model 12 

For bivariate analyses (22, 24), we split the data into individuals born before and after 13 

the turning point in fertility postponement in AFB (see also Supplementary Information Table 14 

S5). Based on Model 2, we estimate a bivariate model with two GRMs: 15 

𝑽 [
𝒇𝒃

𝒇𝒂
] = [

𝑨𝒃𝜎𝑔_𝑏
2 + 𝐀𝐠𝐱𝐩_𝐛𝜎𝑔𝑥𝑝_𝑏

2 + 𝐈𝜎𝑒_𝑏
2

𝑨𝒂_𝒃𝜎𝑔_𝑎_𝑏
2 + 𝐀𝐠𝐱𝐩_𝐚_𝐛𝜎𝑔𝑥𝑝_𝑎_𝑏

2

        𝑨𝒂_𝒃𝜎𝑔_𝑎_𝑏
2 + 𝐀𝐠𝐱𝐩_𝐚_𝐛𝜎𝑔𝑥𝑝_𝑎_𝑏

2

          𝑨𝒃𝜎𝑔_𝑎
2 + 𝐀𝐠𝐱𝐩_𝐚𝜎𝑔𝑥𝑝_𝑎

2 + 𝐈𝜎𝑒_𝑎
2 ] 16 

where as 𝒇𝒃 and 𝒇𝒂  are vectors of length 𝑁𝑏 𝑎𝑛𝑑 𝑁𝑎of fertility phenotypes (NEB or 17 

AFB) of individuals born before or after the postponement transition started, with N being the 18 

respective sample size of the subsets. Variance components refer to those from Model 2, 19 

whereas the lower index _b indicates that they are estimated in the subset of individuals born 20 

before and index _a born after the start of the postponement transition. The index _b_a 21 
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denominates the covariance of variances components across subsets. The correlation of the 1 

genetic factors are estimated as:  2 

𝑟𝜎𝑔𝑥𝑝_𝑎_𝑏
2 = 𝜎𝑔𝑥𝑝_𝑎_𝑏

2 /√𝜎𝑔𝑥𝑝_𝑎
2 ∗ 𝜎𝑔𝑥𝑝_𝑏

2  3 

and 4 

𝑟𝜎𝑔_𝑎_𝑏
2 = 𝜎𝑔_𝑎_𝑏

2 /√𝜎𝑔_𝑎
2 ∗ 𝜎𝑔_𝑏

2  5 
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Tables 

Table 1.  Heritability estimates of the full GREML model and gene environment interaction models for number of children ever born 

(NEB) and age at first birth (AFB) 

 Number of children ever born 

Model 1  2  3  4 

 Estimate 

(SE) 

p-value  Estimate  

(SE) 

p-value  Estimate 

(SE) 

p-value  Estimate 

(SE) 

p-value 

𝜎𝑔
2/𝜎𝑃

2 0.038 

(0.0097) 

2.0 x10-5  0.0070  

(0.011) 

0.26 

 

 0.00  

(0.013) 

0.50  0.00  

(0.015) 

0.50 

𝜎𝑔𝑥𝑝
2 /𝜎𝑃

2 -- --  0.15  

(0.024) 

6.0x10-12  -- --  0.073  

(0.036) 

0.18 

𝜎𝑔𝑥𝑑
2 /𝜎𝑃

2 -- --  -- --  0.097  

(0.017) 

3.3x10-16  0.064  

(0.020) 

5.9x10-4 

𝜎𝑔𝑥𝑝𝑥𝑑
2 /𝜎𝑃

2 -- --  -- --  -- --  0.085  

(0.045) 

0.0030 

N 31396 

  

 Age at first birth 

Model 1  2  3  4 

 Estimate (SE) p-value  Estimate  

(SE) 

p-value  Estimate  

(SE) 

p-value  Estimate 

(SE) 

p-value 

𝜎𝑔
2/𝜎𝑃

2 0.053  

(0.019) 

0.0020  0.024  

(0.022) 

0.14  0.00  

(0.030) 

0.35  0.011  

(0.028) 

0.32 

𝜎𝑔𝑥𝑝
2 /𝜎𝑃

2 -- --  0.10 

(0.039) 

0.0037  -- --  0.00  

(0.062) 

0.50 

𝜎𝑔𝑥𝑑
2 /𝜎𝑃

2 -- --  -- --  0.084  

(0.031) 

4.6 x10-4  0.00  

(0.040) 

0.50 

𝜎𝑔𝑥𝑝𝑥𝑑
2 /𝜎𝑃

2 -- --  -- --  -- --  0.18  

(0.077) 

0.0032 

N 16109 
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Note: 𝜎𝑔
2/𝜎𝑃

2 = proportion of observed variance in the outcome associated with genetic variance across all environments,  𝜎𝑔𝑥𝑝
2 /𝜎𝑃

2 = 

proportion of observed variance in the outcomes associated with additional genetic variance within populations, 𝜎𝑔𝑥𝑑
2 /𝜎𝑃

2 = proportion of 

observed variance associated with additional genetic variance within demographic birth cohorts, 𝜎𝑔𝑥𝑝𝑥𝑑
2 /𝜎𝑃

2 = proportion of observed 

variance associated with additional genetic variance within populations and demographic birth cohorts, p-values are based on likelihood-ratio 

test comparing the full model with the model with one constraining the particular effect to be zero, all analyses include the first 20 Principal 

Components, outcomes are standardized for sex, birth year and country. 
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Table 2. Bivariate analysis of Model 2 to estimate genetic correlations for gxp (genes x population) or global g (gene) component 

before and after fertility postponement 

 Number of children ever born 

 Before postponement After postponement r(G)   

 Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value 

 

N 

𝜎𝑔𝑥𝑝
2 /𝜎𝑃

2 0.15   

(0.039) 

9.6x10
-6

 

 

0.13 

(0.048) 

0.0010 

 

1.00 

(0.35) 

1.3x10
-5

 

 

17,969 

𝜎𝑔
2/𝜎𝑃

2 0.031  

(0.018) 

0.042 

 

0.0017 (0.026) 0.50 

 

-1.00 

(8.04) 

0.50 13,427 

 Age at first birth 

 Before postponement After postponement r(G)   

 Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value N 

𝜎𝑔𝑥𝑝
2 /𝜎𝑃

2 0.099  

(0.073) 

0.083 

 

0.13  

(0.074) 

0.070 

 

0.11  

(0.59) 

0.27 

 

8,049 

𝜎𝑔
2/𝜎𝑃

2 0.023  

(0.04) 

 

0.20 

 

0.011   

(0.048) 

 

0.50 

 

1.00  

(2.89) 

 

0.50 8,060 
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Note: 𝜎𝑔
2/𝜎𝑃

2 = proportion of observed variance in the outcome associated with genetic variance across all environments,  𝜎𝑔𝑥𝑝
2 /𝜎𝑃

2 = 

proportion of observed variance in the outcomes associated with additional genetic variance within populations, 𝜎𝑔𝑥𝑑
2 /𝜎𝑃

2 = proportion of 

observed variance associated with additional genetic variance within demographic birth cohorts, r(G) = genetic correlation, p-values are 

based on likelihood-ratio test comparing the full model with the model with one constraining the particular effect to be zero, all analyses 

include the first 20 Principal Components, outcomes are standardized for sex, birth year and country. 
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Figures 

 

Figure 1. Trends in age at first birth in cohorts from the US, UK, Sweden, the 

Netherlands, Estonia and Australia (1903-1970). 

 

Note: Trends in the mean age at first birth are moving averages based on aggregated data 

obtained from Human Fertility Database and the Human Fertility Collection (for details see 

Material and Methods). For Australia, no official data has been available and the trends have 

been estimated from the QIMR dataset. See Supplementary Fig. S2 for the birth cohort specific  

average in the QIMR data. 
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Figure 2. Bar Charts of the SNP-heritability estimates in number of children ever born 

(NEB) and age at first birth (AFB) for the different model specifications from Table 

1 

          

Note: SNP-heritability as the sum of genetic variance over the total variance in Model 

specification 1 = amongst all individuals, 2 = amongst individuals living within the same 

population, 3 = amongst individuals living within the same demographic birth cohort born 

either before or after fertility postponement, 4 = amongst individuals living in the same 

population and demographic birth cohort, dots = estimate, lines = estimate ± 1 SE, The 

corresponding table to Figure 2 an be found in Supporting Table S4. 

●

●

●

●

●

●

●

●

0

10

20

30

0

10

20

30

#
 E

v
e
r b

o
rn

 c
h

ild
re

n
A

g
e

 a
t firs

t b
irth

1 2 3 4

Model specification

S
N

P
 b

a
s

e
d

 h
e
ri

ta
b

il
it

y
 (

%
)


