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Abstract

In this paper, we extend the well-known multiregional population projection model developed by

Andrei Rogers and colleagues to be fully probabilistic. Multiregional models provide a general and

�exible platform for modelling and analysing population change over time. They allow the combina-

tion of all the main components of population change by age with various transitions that population

groups may experience throughout their life course. What distinguishes these models from ordinary

projections is that they include transition matrices of interregional migration by age. This infor-

mation is an important component of subnational population change yet models for forecasting the

patterns for use in population projections are largely non-existent. National statistical o�ces tend to

rely on simple deterministic assumptions regarding net migration or gross �ows of in-migration and

out-migration. These models do not take into account the linkages between origins and destinations

and often have to be adjusted to ensure zero net migration and the same totals for in-migration and

out-migration. In this paper, we focus on the full matrix of �ows to avoid this problem. To deal with

the large number of possible �ows, we develop a Bayesian hierarchical model to forecast age-speci�c

interregional migration in England, and then include this information with probabilistic forecasts of

regional births, deaths, immigration and emigration. The results demonstrate the di�erences that

arise from di�erent models speci�cations and the promise of the general approach.
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1 Introduction

This research substantially extends earlier e�orts for multiregional estimation and forecasting popula-
tion, namely Gullickson and Moen (2001), Sweeney and Konty (2002), Raymer et al. (2006), Wilson and
Bell (2007), and (Bryant et al., 2013), by the inclusion of probabilistic information within the multi-
regional population projection model. Multiregional models include transition matrices of interregional
migration by age, which is an important component of subnational population change yet probabilistic
models for forecasting the patterns for use in population projections are largely non-existent. National
statistical o�ces tend to rely on simple deterministic assumptions regarding net migration or gross �ows
of in-migration and out-migration. These models do not take into account the linkages between origins
and destinations and often have to be adjusted to ensure zero net migration and the same totals for
in-migration and out-migration.

This paper will be extended to include forecasts of births, deaths, internal and international migration
for England. These forecasts will subsequently be combined within a multiregional population projection
model in a similar fashion as in Wi±niowski et al. (2015). The current version of the model has been
tested using the data from Italy as in Raymer et al. (2006). They represent interregional migration in
the years 1970�1971 to 2000�2001 in �ve-year intervals, disaggregated by 20 �ve-year age groups for the
Northwest, Northeast, Centre, South and Islands regions.

In our approach, we concentrate on the multiplicative component models such as those developed in,
e.g., Raymer et al. (2006) and Smith et al. (2010), and bilinear forecasting models such as Lee and Carter
method (Lee and Carter, 1992). Disaggregation of the �ows into multiplicative components is useful for
identifying the important underlying structures in the multi-dimensional data on migration.
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2 Methods of forecasting interregional migration

The forecasting approach for interregional migration developed in this paper utilises Bayesian inference
techniques, which treats all unknown parameters as random and having probability distributions. This
allows us to incorporate uncertainty from the data and model parameters in the forecasts. Additionally,
the Bayesian approach enables us to include in the model any informative and subjective information
that can be elicited from the experts.

2.1 Statistical model

We assume that the time t, origin o, destination d and age a speci�c migration �ows yodat are Poisson
distributed:

yodat ∼ Poisson (µodat) . (1)

The logarithm of the mean µodat is then assumed to follow normal distribution with a mean being a
bilinear model:

logµodat ∼ Normal (M, τodat) . (2)

M represents a mean that includes a time trend for forecasting. In this paper, we propose three models
that include the bilinear time e�ect:

M1 = αoa + αda + αod + βodκt, (3)

M2 = αoa + αda + αod + βoκ1t + βdκ2t, (4)

M3 = αoa + αda + αod + βodκ1t + βaκ2t, (5)

where we assume that

αoa ∼ Normal (αa, τOA) , (6)

αda ∼ Normal (αa, τDA) , (7)

αa ∼ Normal (0, τA) . (8)

In the �rst model,M1, the age pro�les of migration are captured by the age speci�c term αa, which is
constant over time and across regions. The deviations from this age pro�le which are speci�c to each origin
are then captured by the coe�cient αoa. Analogously, the destination-speci�c deviations of the age pro�le
are re�ected by αda. Further, we introduce the two-way interaction term αod for variation between each
of the origins-destinations pairs. The coe�cient βod measures how fast this origin-destination interaction
changes over time, in response to changes in time-speci�c e�ect κt.

Model M2 di�ers from M1 in the modelling origin and destination interactions with time. Instead
of a two-way changes of the origin-destination interaction, we introduce origin-speci�c changes βo and
destination-speci�c changes βd, with their own time-speci�c progression in time captured by κ1t and κ2t,
respectively.

Model M3 is a direct extension of M1 that allows the age pro�le to change over time. The tempo
of this change is captured by βa and it corresponds to the time e�ect κ2t in Eq. (5). This extension is
similar to the decomposition of the age structure of mortality in the Lee and Carter (1992) model.

To forecast the migration �ows, we assume that the time-e�ect parameters κ follow a random walk
without drift:

κt ∼ Normal (κt−1, τT ) . (9)

This implies that the expectation of the change of the given pro�le, whether it is origin, destination,
origin and destination, or age, is the same as observed in the previous period. This speci�cation ensures
stability of the forecast levels of migration but also leads to increasing uncertainty over time. Other
speci�cations, such as univariate and multivariate autoregressive processes are possible. In this application
on the Italian data, the number of observations over time is seven. We believe that this series is too
short for any meaningful inference with a larger number of parameters, and with the absence of any
subjective information that could be fed into the model in form of the prior distributions. Finally, to
ensure identi�cation of the bilinear terms in the models (i.e. terms βκ), we assume that parameters
representing the tempo of change for a given component β sum to one.
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2.2 Prior distributions

For the coe�cients capturing constant pro�les by origin (αo), destination (αd), and both origin and
destination (αod), we assume normal prior distributions:

αx ∼ Normal (0, ταx ) , (10)

where x denotes the interaction o, d or od.
For the tempo parameters β we assume a prior in form of a normal distribution, conditional on the

constraint that all elements of the vector sum to one:

β(1:z−1)
x ∼ Normal(z−1)

(
1/z, τβxΨ

)
, β(z)

x = 1−
z−1∑
i=1

β(i)
x , (11)

where (z) denotes the last element of the given vector and precision matrix Ψ can be derived by using
equations for conditional normal distributions and has the value of two on the diagonal elements and one
on the o�-diagonal elements.

We assume weakly informative prior distributions for the precision parameters in form of a left-truncated
normal distributions, as suggested by Gelman (2006):

τ ∼ Normal
(
0, 10−3

)
1(τ ≥ 0), (12)

where 1(f) denotes an indicator function taking one if f holds and zero otherwise. These prior dis-
tributions are practically non-informative in a sense that they allow the data to drive the estimation
process.

3 Results

The posterior distributions for model parameters and forecasts of migration were obtained from the
MCMC simulations implemented in the OpenBUGS software (Lunn et al., 2009). The example results
for models M1, M2 and M3 for the �ow from the Northwest to the South are presented in Figure 1.
The entire matrix containing observed migration �ows for the year 2001 and probabilistic forecasts from
ModelM3 is presented in Figure 2.

The goodness of �t analysis reveals that the models are slightly over-�tting the data. The coverages
of the data that are fed into the model are presented in Table 1. The over-�tting likely results from the
fact that the data for which the �t is measured are used to compute the coverage.

Model 50% interval 80% interval 95% interval

M1 59.6% 84.5% 94.6%
M2 61.2% 83.4% 93.9%
M3 59.8% 86.1% 95.1%

Table 1: Coverage of the data by the posterior predictive distributions for the data

4 Summary

In this paper, we have developed a probabilistic approach for forecasting age-speci�c interregional migra-
tion. The approach focuses on the underlying structures found in multidimensional tables of migration
�ows. This work is still in development. Our initial analyses demonstrate the potential of this work. In
the future, we plan to extend this work by applying the modelling approach to a complete annual time
series of �ows and to data obtained from other countries. We also plan to apply other model speci�cations
and carry out in-sample forecasts to test their accuracy.
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Figure 1: Internal migration �ows from the Northwest to the South.
Note: The Y axis ranges from 0 to 7000 migrants; the X axis are 20 �ve-year age groups. The black curve
is 2000 data, �t to these data in red, 2025 forecast is green; green lines denote the percentiles of the
posterior distribution.
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Figure 2: Internal migration matrix in Italy � ModelM3.
Note: The Y axis on the diagonal ranges from 0 to 70000 migrants; o�-diagonal plots have 0 to 25000.
The X axis are 20 �ve-year age groups. 1970-2000 data (black), 2025 forecast (green) with medians (blue).
NW denotes Northwest region, NE � Northeast, C � Centre, S � South, and I � Islands.
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