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Abstract

Reliable mortality estimates at the subnational level are essential in the study
of health inequalities within a country. One of the difficulties in producing such
estimates is the presence of small populations, where the stochastic variation in
death counts is relatively high, and so the underlying mortality levels are unclear.
We present a Bayesian hierarchical model to estimate mortality at the subnational
level. The model builds on characteristic age patterns in mortality curves, which
are constructed using principal components from a set of reference mortality curves.
Information on mortality rates are pooled across geographic space and smoothed
over time. Testing of the model shows reasonable estimates and uncertainty levels
when the model is applied to both simulated data which mimic US counties, and
real data for French départements. The estimates produced by the model have
direct applications to the study of subregional health patterns and disparities.
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1 Introduction

In order to effectively study health disparities within a country, it is important to
obtain reliable subnational mortality estimates to quantify geographic differences
accurately. There is a large demand for estimates of small-area mortality as indica-
tors of overall health and well-being, as well as for natural experiments that exploit
policy changes at local levels. Reliable mortality estimates for regional populations
could help to better understand how place-of-residence and communities can affect
health status, through both compositional and contextual mechanisms (Macintyre
et al. 2002).

One of the difficulties in producing mortality estimates for subnational areas is
the presence of small populations where the stochastic variation in death counts
is relatively high. For example, 10 per cent, or around 300, of US counties have
populations of less than 5,100, and 1 per cent of counties have less than 1,000 people
(USCB 2015). The resulting mortality rates in small areas are often highly erratic
and may have zero death counts, meaning the underlying true mortality schedules
are unclear.

The aim of this paper is to formulate a model for estimating mortality rates at
the subnational level, across geographic areas with a wide variety of population
sizes and death counts. Resulting estimates would be useful for guiding future
policy efforts to improve the health of populations and to investigate the historical
impact of public health interventions and changes in the structure of local health
programs. In this article, we focus on developing the methodology to produce age-
and sex-specific mortality rates and the approach is tested on simulated data that
mimic US counties, and on real data for French départements. However, the model
is flexible enough to be used in a wide range of situations.

There has been a growing literature in the field of small-area mortality estimation.
However, the demand for accurate, reliable and consistent estimates has not yet
been met. The traditional life table approach assumes that deaths yax in a popula-
tion in area a at age x are poisson distributed ya,x ∼ Poisson(Pa,x ·ma,x) where Pa,x
is the population at risk and ma,x is the mortality rate. The maximum likelihood
estimate of the mortality rate for area a at age x is

m̂ax =
ya,x
Pa,x

.

This approach essentially involves estimating as many fixed-effect parameters max

as there are data points. In addition, this estimation process makes no reference
to or use of the information about mortality rates at other ages, in other areas or
at other time points. Confidence intervals can be derived based on the distribution
of deaths, but for small populations, stochastic variation is high and so confidence
intervals and standard errors are large. Estimating mortality rates in small popu-
lations therefore requires different types of approaches.

To avoid issues that arise in small-area mortality estimation, a common approach
is to aggregate mortality data across multiple years or across space to form larger
geographic areas. For example, recent work by Chetty et al. (2016) and Currie
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and Schwandt (2016) look at mortality inequalities in the US using deaths and
income measures at the county level. However, data are either aggregated across
space and time (Currie and Schwandt 2016) or results are not published for smaller
populations (in the case of Chetty et al. (2016), where the minimum population size
is 20,000). However, given the information lost in aggregating data from smaller
areas, there is value in employing other techniques to infer mortality levels and
trends.

One option that has been employed is to treat each small population as a stand-
alone population and model accordingly using traditional model life table ap-
proaches. For example, Bravo and Malta (2010) outline an approach for estimating
life tables in small populations, applied to regional areas of Portugal. They estimate
Gompertz-Makeham functions via generalized linear models, with an adjustment
at older ages. Another approach by Jarner and Kryger (2011) involves estimating
old-age mortality in small populations by first estimating parameters of a frailty
model using a larger reference population. However, approaches that treat small
populations separately do not account for the likely relationships between the re-
gional population estimates or patterns over time. Other approaches in the US have
used county-level covariates such as socio-economic status and education to predict
county-level life expectancy (Ezzati et al. 2008; Srebotnjak et al. 2010; Kulkarni
et al. 2011; Kindig and Cheng 2013). However, there are issues with using the re-
sulting estimates to infer relationships between health, poverty rates and education
without concerns of endogeneity.

In this paper, we propose a new model that relies on a Bayesian hierarchical frame-
work which allows information on mortality to be shared across time and through
space. This helps to inform the mortality patterns in smaller geographic areas,
where uncertainty around the data is high. The modeling process produces uncer-
tainty intervals around the mortality estimates, which can then be translated into
uncertainty around other life-table quantities (for example, life expectancy). As
well as producing uncertainty intervals around the final estimates, the modeling
process also involves the estimation of other meaningful variance parameters that
may relate to variation in mortality within, or across, states.

The remainder of the paper is structured as follows. In the next section, the
methodology for estimating age-specific mortality rates is described. The model
is then applied to two different data situations – simulated and real – and results
are discussed. Performance of the model is evaluated through coverage and mean-
squared-error measures. The paper finishes with a discussion, including plans for
future work.

2 Method

We propose a model that has an underlying functional form that captures regu-
larities in age patterns in mortality. We then build on this functional form within
a Bayesian hierarchical framework, penalizing departures from the characteristic
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shapes across age, as well as sharing information across geographic areas and en-
suring a relatively smooth trend in mortality over time.

Bayesian hierarchical models have previously been used in a wide range of demo-
graphic applications. For example, a model proposed by Raftery et al. (2012) is
used by the United Nations Population Division to produce probabilistic popula-
tion projections. Alkema and New (2014) developed a Bayesian hierarchical model
for estimating the under-five mortality rate for all countries worldwide. There are
many other examples in the fields of mortality, fertility and migration (e.g. Condgon
2009; King and Soneji 2011; Sharrow et al. 2013; Alkema et al. 2012; Bijak 2008).
Our approach has similarities to applications by authors in cause of death mortality
estimation (Girosi and King 2008) and cohort fertility projection (Schmertmann et
al. 2014), but with a focus on addressing small-area estimation issues, rather than
forecasting.

2.1 Model set-up

Let yx,a,t be the deaths at age x in area a at time t. We assume that deaths are
Poisson distributed

yx,a,t ∼ Poisson(Px,a,t ·mx,a,t), (1)

where mx,a,t is the mortality rate at age x, area a and time t and Px,a,t is the
population at risk at age x, area a and time t. We estimate mortality rates at ages
0, 1, 5, and then in 5-year intervals up to 85+.

The mx,a,t are modeled on the log-scale as:

log(mx,a,t) = β1,a,t · Y1x + β2,a,t · Y2x + β3,a,t · Y3x + ux,a,t,

where Ypx is the pth principal component of some set of standard mortality curves,
and ux,a,t is a random effect. The use of principal components has similarities with
the Lee-Carter approach (Lee and Carter 1992). Principal components create an
underlying structure of the model in which regularities in age patterns of human
mortality can be expressed. Many different kinds of shapes of mortality curves can
be expressed as a combination of the components. Incorporating more than one
principal component allows for greater flexibility in the underlying shape of the
mortality age schedule.

Principal components are obtained via a singular value decomposition on a set
of standard mortality curves. For example, for the application to simulated US
counties below, we used US state mortality rates from 1980–2010. Let X be a
N × G matrix of log-mortality rates, where N is the number of observations and
G is the number of age-groups. In the US states case, we had N = 50× 31 = 1550
observations of G = 19 age-groups. The singular value decomposition of X is

X = UDV′,

where V is a G × G matrix. The first three columns of V (the first three right-
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singular values of X) are Y1x, Y2x and Y3x.1 The first three principal components
for US state mortality curves from 1980–2010 are shown in Figure ?? below. They
were based on mortality curves on the log scale. Broadly, the first principal compo-
nent describes the overall mortality curve. The second principal component allows
mortality at younger ages to be higher in relation to adult mortality. The third
principal component allows adult mortality to be higher in relation to mortality
at young and old ages. For example, in some regions of a country, child mortality
might be relatively higher than the baseline schedule. In other regions, where preva-
lence of deaths due to accidents is higher, adult mortality would be higher than
the baseline pattern. The components capture overall patterns of mortality well; a
wide range of different mortality curves can be expressed as a linear combination
of these three components.

Figure 1: Principal components of (logged) US state mortality schedules, Males, 1980–
2010.
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The addition of the random effect term ux,a,t in the expression for log(mx,a,t) ac-
counts for potential over-dispersion of deaths, i.e. the case where the variance in
deaths is greater than the mean, which otherwise would not be expected given the
assumption of Poisson-distributed deaths (Congdon 2009). It is assumed that these
random effects are centered at zero with an associated variance:

ux,a,t ∼ N(0, σ2x).

The variance parameter varies by age group, allowing heterogeneity in some age
groups to be greater than in others. In practice it is often the younger age groups,
with the lowest levels of mortality, that have the highest variation.

2.2 Pooling information across geographic area

To allow for information on the level and shape of mortality to be shared across
geographic space, we assume that the coefficients βp,a,t for a particular area are

1Throughout the paper, we refer to the Ypx’s as principal components for simplicity, even though
technically Ypx is really the p−th vector of principal component loadings.
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drawn from a common distribution centered around a state (or country) mean:

βp,a,t ∼ N(µβp,t , σ
2
βp,t)

where p indicates principal component (p = 1, 2, 3). Larger areas in terms of pop-
ulation size (and death counts) have a bigger effect on the overall means. The less
data available on deaths in an area, the closer the parameter estimates are to the
mean parameter value. In this way, mortality patterns in smaller areas are par-
tially informed by mortality patterns in larger areas. At the same time, mortality
patterns in larger areas borrow little information from the pooling process and are
largely determined by their own observed death counts.

The influence of the geographic pooling is illustrated in Figure ??. The charts
illustrate observed, true and fitted log-mortality rates for a hypothetical county
with a population of 5,000 males. The black dashed line is the true underlying
log-mortality rate. The black dots represent the observed log-mortality rates; these
were simulated from the true rates using equation ??. Where there are gaps, the
observed death count was zero. The red line and associated shaded area is the
fit and 95 per cent credible intervals. The graph on the left showed a fit without
geographic pooling, while the graph on the right shows a fit with geographic pooling.
The effect of pooling is seen most in log-mortality rates at younger ages, where rates
are low. As many of the younger age groups have observed zero death counts, the
unpooled model estimates log-mortality rates that are much lower than the true
rates. The pooled model benefits from information on young-age mortality from
other counties, giving a more reasonable estimate.

Figure 2: Illustrating the effect of geographic pooling.
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In practice, the mean parameter values µβp,t could be determined from any plausible
group of areas which share similar characteristics. We have tested the model using
state level mean parameter values, but other options include grouping areas by
a smaller location scale, by rural/urban area within state, or by a common age
distribution.
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2.3 Smoothing across time

We assume the parameters governing the shape of the mortality curve, βp,a,t, change
gradually and in a relatively regular pattern over time. We impose this smoothing
by penalizing the second-order differences across time in the mean parameters:

µβp,t ∼ N
(

2 · µβp,t−1 − µβp,t−2 , σ
2
µβp,t

)
for p = 1, 2, 3. This set up is penalizing differences from a linear trend in the mean
parameters. Smoothing the mean parameters, rather than the actual parameters
βp,a,t, still allows for mortality trends to depart from a smooth trajectory if sug-
gested by the data. For example, if a particular area suffered from a influenza
outbreak thus making mortality higher than in previous years, the βp,a,t terms
would allow for higher mortality.

The effect of smoothing parameters over time is shown in Figure ??. The graph
shows the estimated median value of the parameter µβ1 over 31 years in a simulated
US county model. The blue line shows the estimates without smoothing, while the
red dashed line shows the effect of smoothing.

Figure 3: Illustrating the effect of smoothing over time.
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2.4 Adding constraints to the model for total areas

While mortality rates are estimated for subnational populations, it is important
that these mortality rates, when aggregated to the state or national level, are
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consistent with the mortality rates observed at the aggregate level. To ensure this
is the case, we add a constraint to the model which specifies that the number of
deaths in a state (or country) is Poisson distributed with a rate equal to the sum
of all estimated deaths in all areas:

A∑
a=1

yx,a,t ∼ Poisson

(
A∑
a=1

(Px,a,t ·mx,a,t)

)

where A is the total number of areas.

2.5 Priors and Implementation

Non-informative priors were put on variance parameters. Operationally, we used a
uniform distribution between 0 and 40 for the standard deviations:

σβp,t ∼ U(0, 40)

σµβp,t ∼ U(0, 40)

σx ∼ U(0, 40).

The model was fitted in a Bayesian framework using the statistical software R.
Samples were taken from the posterior distributions of the parameters via a Markov
Chain Monte Carlo (MCMC) algorithm. This was performed through the use of
JAGS software, an R package developed by Plummer (2003). Standard diagnostic
checks using trace plots and the Gelman and Rubin diagnostic (Gelman and Rubin
1992) were used to check convergence.

2.6 Simulation of data for model testing

In order to test the model, we created a simulated data set of deaths and populations
that mimic counties within US states. The ‘true’ mortality rate in a county is based
on a specified population and age structure, and the mortality rate in the state. The
mortality curve for a county can be altered to change shape via a Brass relational
model setup, assuming that:

log

(
lx

1− lx

)
= α+ β · Yx (2)

where lx is the survivorship at age x and Yx is the survivorship at age x in the state
of interest. To alter the shape of the survivorship curve for a particular county,
the values of α and β were changed. The values of α and β were chosen randomly
from the ranges [−0.75, 0.75] and [0.7, 1.3], respectively. These ranges of α and
β values were chosen because they translate to a reasonable range of age-specific
mortality curves commonly observed. The survivorship rates were then converted
to mortality rates using standard life table relationships.
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Once the ‘true’ mortality rate schedules were obtained, we simulated deaths ac-
cording to the relationship shown in Equation ??. A range of population sizes were
tested, with the minimum county size being 1,000 people of a particular sex. At
this small population size, many simulated death counts for particular age groups
are equal to zero.

3 Results

3.1 Simulated data

Figure ?? shows the true, simulated (‘observed’) data and estimated mortality
rates on the log scale in three hypothetical counties within the same state but with
different population sizes. The points show the observed data, which is simulated
from the true underlying mortality rate, shown by the black dashed line. For the
smallest county, which has 1,000 people, many of the observed death counts are
zero, so the data do not show up on the log scale. The red line shows the estimated
log-mortality rates, and the corresponding red shaded area shows the 95 per cent
credible intervals. As the size of the county increases, the mortality pattern in the
observed data becomes more regular. As such, the uncertainty around the estimates
decreases with increased population size.

Figure 4: True, simulated and estimated log-mortality rates of three counties.
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3.1.1 Evaluation of model performance

In order to evaluate model performance, we compared the model fit to the fit of a
simple Loess smoother and Brass model. The Loess approach does not incorporate
any pooling of information or demographic regularities across age. The Brass esti-
mation process uses Equation ??. The methods of estimation were compared using
the simulated data, where the true value of the mortality rates was known. For
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each area and time, we estimated the root mean squared error (RMSE), defined as

RMSE =

√√√√ G∑
i=1

(m̂x −m∗x),

where m̂x is the estimated mortality rate at age x, m∗x is the true mortality rate
and G is the number of age groups.

Table ?? below shows the average RMSE for the three fits to a simulated dataset
containing 60 counties over 31 years (12 counties per size group). In all cases, the
RMSE decreases as county size increases. This is intuitive because, as the county
population increases, there are fewer zero death counts and so more information
about the shape of the mortality curve. The average RMSE for the model is always
lower than Loess or Brass, irrespective of county size. Although the Brass RMSE
seem reasonable, it is most likely because the data were generated using a Brass
relational model.

Table 1: Average RMSE for Model, Loess and Brass Fits
RMSE

County Size Model Loess Brass
1,000 0.034 0.187 0.039
5,000 0.027 0.078 0.037

10,000 0.027 0.065 0.042
20,000 0.022 0.052 0.030

100,000 0.013 0.049 0.027

In addition, we also evaluated the relationship between the nominal and actual
coverage for the uncertainty intervals produced by the Bayesian model. Coverage
is defined as:

1

G

G∑
i=1

1 [m∗x ≥ lx] 1 [m∗x < rx]

where G is the number of age groups, m∗x is the true mortality rate for the xth age
group and lx and rx the lower and upper bounds of the credible intervals for the
xth age group. Coverage at the 80, 90 and 95 per cent levels was considered. Table
?? shows the average coverage for the proposed model, fit to 60 counties over 31
years. In general, actual coverage levels are close to the nominal level, indicating
that the model is well-calibrated. The coverage level tends to decrease as county
size increases.

3.2 Application to French Départements

We also tested the model on real mortality data, applied to death and population
counts by sex in French départements from 1975–2008 (INSEE 2015).2 The annual

2We chose to use French départements data because, at the time of writing, data for all US counties
was not readily available.
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Table 2: Nominal versus actual coverage
Coverage level (%)

County Size 80 90 95
1,000 0.871 0.952 0.982
5,000 0.799 0.896 0.940

10,000 0.749 0.853 0.890
20,000 0.744 0.833 0.891

100,000 0.763 0.865 0.901

life tables were constructed by the Division des statistiques régionales, locales et
urbaines [Regional, Local and Urban Statistics Division] of the French Institut
national de la statistique et des études économiques or INSEE [National Institute
for Statistics and Economic Studies]. The life tables were built from the vital
statistics and census data also collected and processed by INSEE. There are 96
French départements ranging in population size from around 35,000 to 1.5 million
(for one sex).

We used national France mortality curves from 1962–2008 to form the set of prin-
cipal components used in estimation. For illustration, Figures ?? and ?? show the
observed and estimated log-mortality rates for males in the departments Lozère and
Somme in 1975 and 2008. Lozère has a male population of around 38,000, while
Somme has a male population of around 275,000. For both départements, there is
a decrease in mortality rates from 1975 to 2008. As a consequence there are more
zero death counts observed in 2008 compared with 1975, corresponding to more
uncertainty around estimates in the more recent year. Additionally, there is less
uncertainty around the Somme estimates, because the population size is around
seven times the population in Lozère.

Figure 5: Observed and estimated log-mortality rates, Lozère, Males, 1975 and 2008.
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Once age-specific mortality rates have been estimated, other mortality measures and
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Figure 6: Observed and estimated log-mortality rates, Somme, Males, 1975 and 2008.
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associated uncertainty can be calculated. Figure ?? below shows life expectancy
at birth estimates for males in 2008. Life expectancy is estimated to be highest in
areas around Paris and for the Midi-Pyrenees area, and lowest in the northern part
of the country, a well-documented pattern (Barbieri, 2013).

Uncertainty in life expectancy estimates is also easily obtained. Life expectancy is
calculated for each of the posterior samples of age-specific mortality rates. A 95
per cent uncertainty interval is then obtained by calculating the 2.5th and 97.5th

percentiles. For example, the estimate for life expectancy at birth for Paris in 2008
(both sexes) is 84.7 years (95% UI: [84.5, 84.8]). For a smaller départements such
as Lozère, the estimate is 81.9 years [81.5, 82.3]. Complete results for all French
départements are available in an online supplement to this paper.3

Another aspect of the results that could be of interest are the estimated variance
parameters. It is assumed that the βt,p parameters are normally distributed with
mean µp,t and variance σ2βp,t . The variance terms may tell us something about
how the spread of mortality outcomes is changing over time. Figure ?? shows the
median and 95 per cent credible intervals of the variance parameters associated
with β1 and β2 over the period of estimation. While there is no discernible trend in
σ2β1,t , the variance parameter for the β2 term, σ2β2,t , appears to be increasing over
time. The β2 related to the principal component which alters the relationship of the
magnitude of infant and child mortality to mortality at older ages (see Figure ??).
An increase in the variance parameter suggests that départements are becoming
more different over time with respect to child-versus-older mortality. Figure ??
illustrates two départements which have relatively low and high values of β2. For
Tarn, β2 is low, which results in infant mortality being relatively low compared to
adult mortality. For Seine-Saint-Denis, the opposite is true.

3See http://shiny.demog.berkeley.edu/monicah/French/.
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Figure 7: Life expectancy estimates for males, 2008 (e0, years)
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Figure 8: Variance of β1 and β2 over time
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4 Conclusion

We presented a novel method to estimate mortality rates by age and sex at the
subnational level. In our approach we build on characteristic age patterns in mor-
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Figure 9: Low (left graph) and high (right graph) values of β2
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tality curves, pooling information across geographic space and smoothing over time
within the framework of a Bayesian hierarchical model. When tested against sim-
ulated data, the model outperformed estimates from a simple Loess smoother and
Brass model, especially for areas with smaller population sizes. The uncertainty
in our estimates, reflected in the confidence intervals, is well calibrated. An ap-
plication to real data for France illustrates how various parameter estimates from
the model help to assess trends in overall mortality levels and inequalities within
a country. The estimates produced by the model have direct applications to the
study of subregional health patterns and disparities and how these evolve over time.

The model outlined in the paper is proposed as a general framework for estimating
mortality rates in subpopulations. The framework can easily be altered by the user
to best suit the situation in which rates are being estimated. For example, the
mean parameter values µβp,t need not be defined on a state/county basis, but may
be defined by a smaller geographic area or based on some other characteristics,
such as age distribution or rurality of an area. Additionally, it is possible to alter
the random effects to be spatially structured, assuming some correlation in random
effects by distance or of adjacent areas.

The focus of this project has been on estimation of past and present mortality
trends, rather than future ones. However, forecasting of age- and sex-specific mor-
tality rates in a particular area can be obtained directly from model outputs. The
mean parameters µβp,t can be projected forward given the assumed linear time
trend, which forms a basis to infer other parameters for areas of interest. Given
that the relevant variance parameters are also estimated in the process, uncertainty
around forecasts can also be inferred.

One of the contributions of our work is methodological. Estimates of mortality
measures for small areas, most notably life expectancy, have been proposed pre-
viously. For example, Ezzati (2008) used information about number of deaths,
together with covariates related to socio-economic status, in order to estimate mor-
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tality rates. Congdon (2014) developed a random effects model to estimate life
expectancy for subnational areas. Our method builds on some elements presented
in the literature, while incorporating demographic knowledge about regularities in
the Lexis surface of mortality rates by age and over time. More specifically, we
complemented a state-of-the-art Bayesian hierarchical modeling framework to pool
information across space and time, with a classic demographic approach to borrow
information across age groups. In particular, our use of principal components of
schedules of log-mortality rates is informed by a long tradition of demographic mod-
eling of mortality and can be considered an extension of the Lee-Carter approach
(Lee and Carter 1992).

In this article, we developed a general approach to complement classic demographic
modeling ideas within a solid statistical framework. The model that we proposed
and tested is quite minimalistic and relies on fairly simple rules for pooling across
space and smoothing over time. However, the geographic scale at which spatial
pooling will be implemented may depend on specific circumstances of different
countries. Likewise, the type of time smoothing may vary. A number of rules can
be accommodated within the framework that we propose.

Potential extensions to the project include producing estimates by race or by cause
of death for countries with high quality data. In the longer term, some of the ideas
presented in the paper could be leveraged to generate estimates of mortality rates
in the context of countries with low quality data.

15



References

Alkema, L and New, JR (2014). ‘Global estimation of child mortality using a
Bayesian B-spline bias-reduction method.’ The Annals of Applied Statistics
8(4): 2122–2149.

Alkema, L, Raftery, AE, Gerland, P, Clark, SJ, Pelletier, F, Buettner, T, Heilig,
GK (2012). ‘Probabilistic Projections of the Total Fertility Rate for All Coun-
tries’, Demography, 48(3), 815–839.

Barbieri, M (2013). ‘Mortality in France by départements’, Population, Vol. 68,
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