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Abstract 

The second half of 19th century was a time of great demographic changes in Spain, 

both in terms of mortality improvements and fertility decrease. However, such 

changes were far from homogeneous, as the Hibernian peninsula exhibited substantial 

diversity in demographic characteristics. The literature mostly concentrates on 

advancements in mortality and on economic determinants that lead to a fertility 

decline. However little is known on the delicate gender balance at local level, which 

led to female or male excess in Spain, and that, as a result, deeply impacted nuptiality 

and childbearing dynamics. The present study aims at providing a view of nuptiality 

and childbearing dynamics focusing on gender balance in Spain, employing data from 

the 1887 census for 467 juridical areas (comarcas) of mainland Spain. We employ a 

spatial-lag regression model to explain variations in fertility and nuptiality, focusing 

on variables that capture the imbalance in the sex structure, selective migration, 

celibacy as well as other socio-economic determinants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Data 

The data used in this study come from the 1887 Spanish census, which has a rich 

collection of data with sub-provincial detail of 467 juridical areas (comarcas). The 

variables we employ describe the age and sex structure of the population, main 

demographic indicators (Princeton Indexes If and Ig, mortality), as well as the 

economic sector of employment, age at marriage, marriage market characteristics, and 

family structure (nuclear or extended).  

Map1. Princeton Index, If, Spain 1887. 

 

 

Map 2. Market of single men (21-35 years old) and women (16-30 years old) 

 

 

 

 

 



2. Method and Preliminary Findings 

2.1 Spatial autocorrelation and spatial lag model 

The first step in spatial analysis is to build neighboring relations between 

geographical units, the 462 Spanish juridical districts.  

Adjacency between regions can be defined in many ways. In this paper, First Order 

Rook adjacency is used to define neighboring relations between Spanish provinces, so 

that spatial units are considered neighbors if they share common borders but not 

vertices.  

Once the spatial neighbors list has been defined, in spatial analysis it is necessary to 

set the weight matrix for each relationship. The spatial weight matrix has been 

constructed so that the weights for each areal item sum up to unity, establishing a row 

standardized matrix Wij, where the diagonal of the matrix is by convention set to 0. 

𝑊𝑖𝑗 = [

0 ⋯ 𝑑1,52

⋮ ⋱ ⋮
𝑑52,1 ⋯ 0

] 

 

A first exploratory measure to evaluate the strength of spatial patterns across the 

considered variables is Moran’s I test (Cliff & Ord, 1970; Moran, 1950). In order to 

measure spatial autocorrelation, Moran’s I index is required and is computed on the 

model’s residuals.  

Moran’s I is the index obtained through the product of the variable considered, let’s 

call it y, and its spatial lag, with the cross product of y and adjusted for the spatial 

weights considered: 
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where n is the number of spatial units i and j, yi is the i
th

  spatial unit, 𝑦 is the mean of 

y, and wij is the spatial weight matrix, where j represents the regions adjacent to i. 

Moran’s I can take on values between -1 and 1, where – 1 represents strong negative 

autocorrelation, 0 no spatial autocorrelation and 1, strong positive spatial 

autocorrelation. Positive and statistically significant values of Moran’s I for a given 

variable evidence spatial autocorrelation. 

 

 

 



Moran’s I test for spatial autocorrelation is a global measure of spatial 

autocorrelation, meaning that it is computed from the local relationships between the 

values observed for the geographical unit and its neighbors. It is possible to break 

down this measure its components in order to identify clusters and hotspots. Clusters 

are defined as observations with similar neighbors, while hotspots are observations 

with very different neighbors (Messner, Baller, Hawkins, Deane, & Tolnay, 1999). 

The procedure is knows as Local Indicators of Spatial Association or LISA, where the 

Local Moran’s I decomposes Moran's I into its contributions for each location. These 

indicators detect clusters of either similar or dissimilar values around a given 

observation. The relationship between global and local indicators is quite simple, as 

the sum of LISAs for all observations is proportional to Moran's I. Therefore, LISAs 

can be interpreted both as indicators of local spatial clusters or as pinpointing outliers 

in global spatial patterns.  

The measure for LISAs is defined as: 

𝐼𝑖 =
(𝑦𝑖−�̅�) ∑ 𝑤𝑖𝑗(𝑦𝑖−�̅�)𝑛

𝑗=1

∑ (𝑦𝑖−�̅�)𝑛
𝑖
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 (2) 

Where �̅�  , the global mean, is assumed to be  an adequate representation of the 

variable of interest y. 

There are two main ways to model areal data. The first is known as Spatial Lag 

Model, which integrates the spatial dependence explicitly by adding a spatially lagged 

dependent variable, lag(y), on the right hand side of the regression equation. The main 

assumption of this model is that spatial neighbors of the dependent variable exercise a 

direct effect on the value of the independent variable.  

The chosen method of analysis is the Spatial Lag Model, where spatial autocorrelation 

figures in the dependent variable. The Spatial Lag Model is defined as follows: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑖𝑗 + 𝜀𝑖 (3) 

where y is the vector of error terms spatially weighted using the weight matrix W,  is 

the spatial lag coefficient and 𝜀 is a vector of uncorrelated error terms. If there is no 

spatial autocorrelation,  is equal to 0. 

The Spatial Lag Model examines spatial autocorrelation between the dependent 

variable and its adjacent areas and handles spatial autocorrelation as a nuisance. 

Positive spatial error may reflect a mispecified model with omitted variables or spatial 

clusters. Ignoring spatial errors in the residuals might lead to biased coefficients and 

wrong standard errors or p-values. 



We first run a geographically weighted linear regression model through means of 

OLS regression, defined as: 

𝑦𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑥1𝑖 + ⋯ + 𝛽𝑘𝑖𝑥𝑘𝑖 + 𝜀𝑖 (4) 

Where the coefficient is calculated through the weight matrix W: 

�̂�𝑖 = (𝑋𝑇𝑊𝑖𝑋)−1𝑋𝑇𝑊𝑖𝑦 (5) 

In this phase we consider five model subsets, labeled A to E, where each one uses the 

set of fertility related indicators (SBFM, SNMB and MAC) plus a labor (general 

unemployment, female activity and female employment rates) or economic indicators 

(GDP or disposable household income) as independent variables. 

After this step, in order to eliminate spatial autocorrelation we run the spatial error 

model for each of the five model subsets. 

 
2.2 Preliminary Findings 

Maps are a useful tool to visualize spatial patterns. Map.1 shows how the Princeton 

Index for total fertility, If, has clear spatial patterns of lowest-low fertility in the 

North-Eastern provinces (Galicia, Asturias and Cantabria), while the Southern and 

Eastern areas show higher fertility levels. 

Map 2, summarizes the substantial diversity of the Spanish marriage market in the 

XIX century, where internal and international migration produced important 

imbalances in the sex ratios. 

As mentioned earlier, Moran’s I measures the global level of spatial correlation. Table 

1 shows that all variables are spatially autocorrelated and significative. 

Table 1: Moran’s I test for selected variables. 

Variable Moran’s I* Variable Moran’s I* 

Princeton Index If 0.59 Agriculture (%) 0.33 

Princeton Index Ig 0.48 Industry (%) 0.39 

Crude Mortality Rate 0.58 Industry women (%) 0.29 

SMAM women 0.46 Industry men (%) 0.22 

SMAM men 0.76 Servants women (%) 0.21 

Celibacy women (%) 0.62 Servants men (%) 0.26 

Celibacy men (%) 0.55 Literacy women (%) 0.76 

Population increase 0.33 Literacy men (%) 0.82 

Migratory balance 0.25 Urban population 0.30 

Religious men (%) 0.54 Family size 0.59 

*p-value<0.0001 



We first investigate the effect of socio-economic determinants on the marriage 

market of single men and women (dependent variable), defined as the 

proportion single between 21-35 (men) and 16-30 (women) (therefore if the 

dependent variable takes a value >1, there is an excess men in the marriage 

market).  

Table 2: Preliminary results of the lag model. 
 

 Model 1 Model 2 Model 3 

Intercept 3.35***  3.25*** 

SMAM -3.10***  -2.29*** 

Migr. balance 0.10*  0.08* 

Illiteracy men -0.01  -0.002** 

Female Servants 0.01* -0.07* 0.002 

If   0.003*** 

Agriculture  -0.2*** -0.005** 

Industry (women)  -0.07* -0.01 

Clergy (men)  -0.01* -0.001* 

LM test 0.0053 1.12 2.0192 

AIC -511.04 -356.34 -572.25 

Moran I statistic -0.037 -0.079 -0.027 

 
Preliminary results indicate the role of SMAM, singulate mean age at marriage 

(Hajnal 1953) for women. An increase in the number of single men in a region 

would substantially decrease the mean age at marriage of women. 

This preliminary model, far from being the ultimate result, is an indication that 

regional diversity in marriage pattern are deeply spatial in nature (as indicated 

also by the LM test). 

We intend to further investigate the social and economic determinants of the 

marriage market, as well as that of fertility, taking into consideration the family 

structure (such as the number of components and the gender composition of the 

family). 
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