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1 Abstract

This article presents a comparison of two approaches in forecasting total fertility, age specific fertility,

and birth order age specific fertility rates. We employ an auto-arima and a functional time series

robust forecasting model to project fertility for 23 countries using the Human Fertility Database time

series. The comparison of the two models aim at demonstrating the advantages of forecasting both

age specific rates as opposed to the common practice of simply forecasting total rates. We use a

functional principal components analysis to project smoothed age-specific fertility rates in the short

run (15 years). We compare the empirical accuracy of the approach by Hyndman and Ullah (2007)

to auto-ARIMA forecasts and we validate our results through the one-step-ahead to 20-step-ahead

forecast error measures (MFE and MAFE).

2 Data and Methods

Fertility forecasting has recently experienced a renewed interest due to plummeting childbearing

trends in recent decades, making policy makers wonder how much longer will low fertility persist and

if such a downward trend will ever reverse. The new accessibility of long fertility time series together

with their detaledness made possible by the Human Fertility Database allow to try new approaches

in forecasting. The recent study by Hyndman and Ullah (2007) provides a robust forecasting method,

which allows to use age specific fertility rates to forecast total fertility and age specific fertility rates

at the same time.
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This paper stems from the idea of comparing fertility forecasts using age specific fertility rates and

total fertility, all broke down by parity from first to fifth or higher birth order, to assess the robustness

of Hyndman and Ullah (2007) projection model and contrast the results with auto-ARIMA forecasts.

2.1 Data

The data sets used in this study come from the Human Fertility Database (2015). Fertility indica-

tors consist of age-specific fertility rates, for total and parity specific fertility, obtained from the ratio

between number of live births by mothers age (occurrences) and number of women by age at child-

birth among the female resident population (exposures) for a specific calendar year. We selected 23

countries for the projection of ASFR, while the number of countries used for parity specific fertility

projections had to be reduced to 11 due to shorter data series. We selected countries with data

series to be at least 50 years long to obtain consistent sample estimators (Box 2008, ch. 1).

The input data can be consulted and visualized at https://gjabel.shinyapps.io/fertdagg.

2.2 Method

Hyndman and Booth (2007) projection method combines non-parametric smoothing, functional data

analysis and principal components analysis. Principal components methods are not new in fertility

forecasts: the advantage of Hyndman and Ullah (2007) and Hyndman and Booth (2008) is to provide

an interpretation of which factors have played a substantial role in shaping fertility in the past and

which factors are going to be relevant in the future.

The technique chosen for this study follows the model introduced by Hyndman and Ullah (2007)

and improved in Hyndman and Booth (2008) using the demography package in R (Hyndman and

Booth 2013). Hyndman and Booth(2008) and Hyndman and Ullah (2007) suggest to smooth the

age-specific fertility schedules in order to erase random fluctuations of fertility rates over time, which

would result in erratic age patterns if forecasted without being first smoothed. Smoothing age-specific

fertility schedules allows a reduction of the inherent randomness in the observed data (Ramsay and

Silverman, 2005).

Considering y∗t (x) the observed fertility rates to be modeled, Hyndman and Booth (2008) first pro-

poses a Box-Cox transformation (Box and Cox, 1964) of y∗t (x), to allow for variation that increases

with the value of y∗t (x) so that the variability in rates is greater when the rates are higher:

yt(x) = 1
λ ([y∗t (x)]λ − 1) if 0 < λ < 1 (1)

where λ determines the strength of the transformation and is set at 0.4 as it gives relatively small out

of sample errors Hyndman and Booth (2008), which differs from the first approach used in Hyndman

and Ullah (2007) that used a log-linear transformation of the fertility rates, to allow for variation that

increases with the value of y∗t (x).
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The following model is developed for the transformed quantity of yt(x):

yt(x) = st(x) + σt(x)εt,x (2)

st(x) = µ(x) +

K∑
k=1

βt,kφk(x) + et(x) (3)

where st(x) is the smoothed age-specific fertility schedule of age x=[15,49], εt,x is a iid standard

normal random variable and σt(x) allows the amount of noise to change with x.

Within the smoothed function st(x), µ(x) average of the age-specific fertility schedules, a robust

estimate of the mean of st(x)overestimatedyearst =[t0, T ]. The φk(x) terms represent the set of k

orthogonal basis functions, which are obtained through principal components decomposition.

Hyndman and Ullah (2007) introduce a two-step algorithm to obtain robust principal component de-

composition to derive φk(x) using weighted principal components (Ramsay and Silverman, 2005

chapter 8) and a projection pursuit algorithm RAPCA from Hubert et al. (2002). This two-step al-

gorithm has the advantage of being faster for highly-dymensional data and numerically more stable

and when combined with weighted approach to principal components analysis is also more efficient

as it ensures a robust method to estimate the basis functions. The βt,k terms are independent

sets of coefficients for each kth component in years t = [t0, T ]. The last element of the equation,

et(x) ∼ N(0, ϑ(x)) , is the serially uncorrelated error model.

This model is a generalization of the Lee and Carter (1992) model for mortality forecasting. There are

several differences between the Lee and Carter(1992) and Hyndman and Ullah(2007) and Hyndman

and Booth (2008) that help improve the fertility forecast. Hyndman and Ullah(2007) and Hyndman

and Booth(2008) assume a smooth fertility schedule, thus eliminating fluctuations in the fertility rates.

Second, in Lee and Carter(1992) µ(x) is defined as the average of yt(x) and hence only one com-

ponent is used, K=1. Thus, βt,k and φk(x) are computed from one component: [yt(x)− ˆµ(x)].

The two-step principal component method yields the decomposition:

f̂t(x) = µ̂t(x) +

K∑
k=1

β̂t,kφk(x) + êt(x) (4)

By definition the basis functions φk(x) are uncorrelated for k?l, thus as Hyndman and Ullah(2007)

showed, robust forecast of the fertility schedule can be based on univariate time series models fitted

to each of the coefficients βt,k, k=1,?,K for t=1,?,n+h where h is the forecast horizon. It follows that

the estimated variance of the error term is used to compute the prediction intervals for the forecast.

The third step is to fit univariate time series models to each of the coefficients β̂t,k, k = 1, . . . , K . For

each set of the coefficients , k=1,?,K univariate robust ARIMA models are fitted following a RAPCA

projection pursuit algorithm based on Chen and Liu (1993), which includes a method that deals with

outliers so that unusual observations do not contaminate the forecast, as specified in Hyndman and

Ullah (2007). If we combine (2) and (3) we obtain a forecast equation for future transferred fertility
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schedules as:

yt(x) = mu(x) +

K∑
k=1

βt,kφk(xi) + ei(xi) + σt(xi)εt,i (5)

Conditioning on the observed data and on the basis functions we obtain the h-step ahead fore-

casts of yn+h(x):

ŷn,h(x) = E[y(n+h)(x) | =,Φ] = µ̂(x) +

K∑
k=1

β̃n,k,hφ̂k(x) (6)

where = denotes observed data yt(xi). Hyndman and Booth (2008) suggests selecting K to min-

imize the mean integrated squared forecast error, as a small K would decrease forecast accuracy.

Hyndman and Booth (2008) find that the method is insensitive of the choice of K, provided that K is

large enough.

2.3 Validation

Validation is carried out truncating progressively the time series for each country in 1990 and project-

ing fertility rates for a 20 years horizon using both Hyndman and Ullah (2007) and ARIMA models.

In order to measure forecast accuracy and bias, we employ mean forecast error, MFE, and mean

absolute forecast error, MAFE. While the MFE is a measure of bias and can be positive or negative

depending on whether the projection overestimates or underestimated the actual data, MAFE mea-

sures forecast precision regardless of its sign and is the average of absolute errors across years in

the forecasting horizon.

Given fi the predicted value and yi the observed value, MFE and MAFE are defined as:

MFE = 1
h

h∑
i=1

(fi − yi) =
1

h

h∑
i=1

(ei) (7)

MAFE = 1
h |

h∑
i=1

| fi − yi |=
1

h

h∑
i=1

| ei | (8)

where | fi − yi | is the average of absolute errors, | ei |.

2.4 Preliminary results

The forecast have been implemented using R, through the demography package (Hyndman 2014)

with the coherent.fdm function, and the forecast package, with the auto.aria function (Hyndman and

Kandahar 2008).

We proceeded to forecast central rates for:
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• tfr based on auto-arima and tfr data;

• asfr and tfr by birth order by auto-arima;

• asfr and tfr based and asfr data on Hyndman and Ullah (2007) functional model;

• asfr and tfr by birth order by Hyndman and Ullah (2007) functional model;

Preliminary results of the validation for central rates show the better fit of Hyndman and Ullah

(2007) model.

Nevertheless, uncertainty needs to be further investigated.
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Figure 1: Mean Absolute Forecast Error for Austria
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Figure 2: Mean Forecast Error for Austria
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