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Abstract1

International organizations, research institutions, insurance companies, pension2

funds, and health policy makers calculate human mortality measures from life tables.3

Life-table data, though, are usually right-censored and mortality measures are sensi-4

tive to the way censoring is addressed. In this article we propose fitting a parametric5

model that describes well human mortality patterns, the gamma-Gompertz-Makeham,6

accounting for censoring, and constructing model-based equivalents of five mortality7

measures: life expectancy, the modal age at death, life disparity, entropy, and the Gini8

coefficient. We show that, in comparison to life-table measures, model-based measures9

are less sensitive to the age at censoring and can be only slightly distorted even if10

the age at censoring is low. We also compare life-table and model-based mortality11

measures for a population with an underlying Gompertz mortality schedule in which12

a fixed proportion of the population is censored.13

Keywords: right censoring; life tables; gamma-Gompertz-Makeham frailty model; model-based mor-14

tality measures; life expectancy; modal age at death; life disparity; entropy; Gini coefficient15
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1 Right-Censoring and Life-Table Mortality Measures16

Human mortality data are aggregated in life tables that describe the distribution of deaths in17

a given period (or cohort) and directly provide mortality measures such as the age-specific18

death rates and (remaining) life expectancy at each age. Statistical offices, international19

organizations, research institutions, insurance companies, pension funds, and health policy20

makers calculate, compare, and project a number of mortality and longevity measures derived21

from the life table. However, statistical offices often provide age-specific death counts up to22

a given age xC (e.g., xC = 80, 85, 90, 95, 100) aggregating all subsequent death counts in a23

“xC+” group, i.e., mortality data are right-censored.24

Life expectancy, perhaps the most widely used longevity measure, is sensitive to the way25

we address right-censoring, i.e., what we assume about the exposure in the last (open-end)26

age group. The nax column of the life table contains the average number of person-years27

lived between ages x and x + n by an individual who died in this interval. In the absence28

of accurate individual data, nax are usually taken either from the Coale-Demeny model life29

tables (Coale and Demeny, 1966) or by assuming n/2 exposure in all intervals [x, x+n) but30

the first (capturing infant mortality) and the last (open-age) one (Wilmoth et al., 2007).31

Remaining life expectancy at any age x, calculated by life-table algebra, depends on the32

choice of the nax column and especially on ∞ax, the average number of person years lived by33

an individual that dies in the last open-age interval. The standard assumption is that ∞ax34

equals the reciprocal of the death rate in the last age category: ∞ax = 1/mx, i.e., after the35

last available age in the life table individuals are exposed to a constant hazard 1 of death36

(Preston et al., 2001). This is a strong assumption that might not be empirically justified,37

especially when the open-end interval starts at an age with a high mortality rate: modifying38

∞ax leads to a completely new age vector of nLx that affects remaining life expectancies at39

all ages.40

Life tables impose a mortality model on the last open-end age group. When this model41

1Throughout this article we will use the terms hazard of death, hazard, hazard function, risk of dying, and

force of mortality interchangeably.
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does not reflect the preceding age-pattern of mortality, the associated mortality measures will42

be distorted: the bigger the proportion of observations subjected to this type of censoring,43

the larger the distortion. Life tables for many (historical and contemporary) populations44

leave 10% or more of the population in the open-end interval (see Table 1) which questions45

the resulting mortality indicators, such as life expectancy, life disparity, entropy, or the Gini46

coefficient, that are widely used by governments, international organizations, and insurance47

companies. The credibility of reported mortality measures for many developing countries is48

questionable because the open-end age group contains a substantial proportion of the pop-49

ulation. This problem is to be observed not only in historical populations, e.g. Bangladeshi50

life tables from 1974 to 1981 that end up with a 65+ or a 70+ open-end interval containing51

between 26% and 55% of the population (HLTD, 2015), but also in contemporary life tables52

like the ones for Brazil in 2007 – the last 80+ age group contains 34.16% of males and 50.89%53

of females2.54

In this article we address right-censoring in a typical survival-analysis setting. We fit a55

parametric model, the gamma-Gompertz-Makeham (ΓGM, throughout the paper) assuming56

that the death counts D(x) at adult ages x are Poisson-distributed (Brillinger, 1986), i.e.,57

D(x) ∼ Poisson(E(x)µ(x)), where E(x) denotes age-specific exposure, and µ(x) is the ΓGM58

hazard of death at age x:59

µ(x) =
aebx

1 + aγ
b

(ebx − 1)
+ c . (1)

Parameter a denotes the level of senescent mortality at the starting age of analysis, b is60

the rate of individual aging, c is an age-constant external risk of death that is, in general,61

not related to the aging process, and γ equals the squared coefficient of variation of the62

distribution of unobserved heterogeneity (frailty). The gamma-Gompertz-Makeham frailty63

model is widely used in human mortality research as it captures well the S-shaped pattern of64

mortality at adult ages. For detailed discussion on the semantics and mathematics behind65

22007 mortality data for Brazil are freely available at the website of Instituto Brasileiro de Geografia e Es-

tat́ıstica (IBGE): http://www.ibge.gov.br/home/estatistica/populacao/tabuadevida/2007/defaulttab.shtm
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the ΓGM we redirect our readers to Vaupel et al. (1979), Missov and Finkelstein (2011),66

Vaupel and Missov (2014), and Missov and Vaupel (2015). We use maximum likelihood for67

fitting the ΓGM model, i.e., we maximize a Poisson log-likelihood68

lnL =
∑
x

[D(x) lnµ(x)− E(x)µ(x)] , (2)

in which E(x) contains all the information on censoring.69

We compute model-based equivalents of five frequently used mortality measures (remain-70

ing life expectancy, the modal age at death, life disparity, entropy, and the Gini coefficient)71

that are based on the estimated ΓGM parameters. We illustrate the lower sensitivity of72

model-based mortality measures to the age at censoring in comparison to their life-table73

counterparts. As model-based mortality measures are only slightly distorted even when the74

age at censoring is low (or, what is equivalent, the proportion of censored individuals is75

high), we argue that international organizations, research institutions, insurance companies,76

pension funds, and even evolutionary biologists working with non-human life tables should77

use model-based mortality measures.78

2 ΓGM Model-Based Mortality Measures79

We will focus on the five perhaps most widely used mortality measures: e(x), remaining life80

expectancy at age x; M , the modal age at death; e†, life disparity; H, entropy; and G, the81

Gini coefficient. For life-table calculation of these (and other) mortality measures we refer82

the reader to Shkolnikov and Andreev (2010), the only exception being the modal age at83

death. To avoid random fluctuation in the density of deaths that might affect M (see Figure84

1), we apply LOESS smoothing (‘loess’ function in the ‘stats’ R-package) with a smoothing85

parameter equal to 0.25. The modal age at death is taken then with high precision directly86

from the values interpolated by LOESS.87

1. Remaining life expectancy at x (x ≥ 0) provides the average remaining lifespan of88

survivors to age x. It is calculated as89
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Figure 1: The effect of random fluctuation on the identification of the modal age at death

(identified by a dashed line). The red curve corresponds to the dx column for the Swedish

male population in 1970 (Source: HMD, 2015). Without smoothing, the modal age at death

is misspecified by about 3 years due to random fluctuation. The ΓGM fit (blue curve) is

almost identical to the non-parametrically smoothed (by LOESS) dx (green curve).

e(x) =
1

s(x)

∞∫
x

s(t) dt , (3)

where s(x) denotes the survival function of the distribution of deaths. A ΓGM life90

expectancy can be calculated by either substituting the ΓGM survival function91

s(x) = e−cx
(

1 +
aγ

b
(ebx − 1)

)−1/γ
, (4)

in (3) and taking the resulting integral numerically or taking advantage of a closed-form92

expression containing hypergeometric series (see Missov and Lenart, 2013: section 2.3,93
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p.30–31).94

2. The modal age at death M , i.e., the age of highest concentration of deaths in a popula-95

tion, is an important indicator for policy makers as this is the age around which public96

health spends most of its resources. The modal age at death in a ΓGM is determined97

by maximizing µ(x) · s(x) (see eq. 1 and 4).98

3. Life disparity e† measures, on the one hand, how much lifespans differ among individ-99

uals and, on the other hand, how many life years are lost due to death (Keyfitz, 1977).100

It is defined as the average remaining life expectancy at ages when deaths occur:101

e† =

∞∫
0

e(x)µ(x)s(x) dx = −
∞∫
0

s(x) ln s(x) dx . (5)

In a ΓGM setting, e† is calculated by numerical integration of (5) taking s(x) from (4).102

4. Entropy H measures heterogeneity in the age at death or, alternatively, the elasticity of103

life expectancy with respect to proportional changes in age-specific mortality (Keyfitz,104

1977). It is defined as105

H =

−
∞∫
0

s(x) ln s(x) dx

∞∫
0

s(x) dx

=
e†

e(0)
. (6)

In a ΓGM setting, we take s(x) from (4) and calculate e(0) and e† from (3) and (5),106

respectively.107

5. For a given population, the Gini coefficient G measures inter-individual inequality in108

the length of life (Shkolnikov et al., 2003). It is defined as109

G = 1−

∞∫
0

s2(x) dx

∞∫
0

s(x) dx

= 1−

∞∫
0

s2(x) dx

e(0)
. (7)
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G can be also represented as the mean of the absolute differences in individual ages110

of death relative to life expectancy (Kendall and Stuart, 1966). The range of the111

Gini coefficient is [0, 1] with 1 representing a population in which all deaths occur at112

the same time. In most developed countries the Gini coefficient increases with time as113

many early deaths are postponed to later ages. Demographers address this phenomenon114

as “life-table rectangulatization” referring to the shape of the corresponding survival115

curve (Shkolnikov et al., 2003). In a ΓGM setting, we calculate the Gini coefficient by116

substituting (4) in (7) and integrating the corresponding expressions numerically.117

3 Life-Table vs Model-Based Mortality Measures118

Life-table mortality measures depend on the way the life table is “closed”, i.e., on the assump-119

tion about exposure in the last (open-age) interval. Most often life-table calculations are120

based on the assumption that the hazard after the age at censoring xC is constant (Preston121

et al., 2001), and the lower xC , the more unrealistic this assumption (the force of mortality122

at adult ages has an S-shaped strictly increasing pattern). In this section we illustrate by123

how much life-table mortality measures can be distorted if the age at censoring is low, i.e.,124

when a high proportion of individuals is censored. While the latter is rather rarely seen in125

human mortality data, perhaps except for some developing countries, it is common practice126

in experiments with non-human species – researchers wait until a certain (not necessarily127

high) percentage of the organisms die. We show for both human and non-human data that128

model-based mortality measures must be used because they accurately account for censoring.129

As a result they can only be slightly distorted even if the age at censoring is low, i.e., when130

the proportion of censored individuals is high. To illustrate that this effect is not restricted131

to the ΓGM model, i.e., to the model that describes best adult human mortality (Missov132

and Vaupel, 2015), we consider an additional example with experimental non-human data133

(rats) where the mortality pattern is well captured by a Gompertz model.134
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3.1 Sensitivity to Censoring in Human Mortality135

We simulate individual lifespans from a ΓGM model: the generating parameters correspond136

to the estimated ΓGM parameters (a = 3.28 · 10−4, b = 0.105, c = 6.52 · 10−4, γ = 0.094)137

for Swedish males in 1970, ages 25-110. Our choice fell on this population because of its138

clear S-shaped mortality pattern. We aggregate the death counts and exposures age-wise to139

construct a life table. We compare then five life-table mortality measures - remaining life140

expectancy, the modal age at death, life disparity, entropy, and the Gini coefficient - to their141

ΓGM model-based counterparts, knowing the true value of each measure.142
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Figure 2: Life-table (red) vs ΓGM model-based (blue) mortality measures for a population

of size 10000. Individual lifetimes have been simulated from a ΓGM (1000 repetitions): the

resulting death counts and exposures have been aggregated age-wise. The red dashed line

in each graph denotes the true value of the measure.

Figures 2 and 3 show the life-table vs model-based versions of the five mortality measures143

(we considered remaining life expectancy at two ages: 25 and 50) for populations of size 10000144
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Figure 3: Life-table (red) vs ΓGM model-based (blue) mortality measures for a population

of size 200000. Individual lifetimes have been simulated from a ΓGM (1000 repetitions): the

resulting death counts and exposures have been aggregated age-wise. The red dashed line

in each graph denotes the true value of the measure.

and 200000, respectively. If the age at censoring is not lower than 85, life-table measures145

deviate slightly from their true values (see Table ??). It is not surprising that discrepancy146

increases as the age at censoring xC gets lower. However, even for xC between 75 and 85,147

all five life-table measures are already distorted by 10-20%. While the statistical offices in148

many countries “close” their life tables at least at age 85, there is a number of countries149

in which the last open-age group starts at lower ages (Wilmoth et al., 2007). As a result,150

their mortality indicators can potentially be distorted if calculated by conventional life-table151

algebra. Note that the proportion of censored individuals is much more important than the152

age at censoring. In the simulation example an 85+ open-end interval corresponds to 20%153

censoring, while the 85+ age group in the Brazilian life tables for 2007 contains 34.16% of154
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male and 50.89% of female deaths (HLTD, 2015).155

3.2 Sensitivity to Censoring in Non-Human Mortality156

Experimental mortality data for non-human species are often characterized by heavy cen-157

soring, leaving sometimes only a small proportion of fully observed individuals. Human158

mortality data are typically subjected to type-I censoring (with a fixed age at censoring),159

while experimental data often exhibit random or deterministic censoring. Depending on the160

experimental setup, we can observe type-I, type-II (experiment ends when a fixed proportion161

of the organisms die, e.g., Dawidowicz et al., 2010; Pietrzak et al., 2015), or, more rarely,162

hybrid censoring (experiment ends when a fixed proportion of the organisms die or a given163

age is reached, see Balakrishnan and Kundu, 2013). Here we focus on the effect of type-II164

censoring on the mortality measures for a population of rats (Anisimov et al., 1989). The165

mortality pattern in this dataset, unlike the human one, is not captured by the ΓGM model:166

Lenart and Missov (2014) apply a goodness-of-fit test for the Gompertz distribution to ver-167

ify the exponential increase in the hazard of death. The hazard of the Gompertz model is168

given by (1) for c = γ = 0. We calculate model-based mortality measures by performing169

parametric bootstrapping (1000 repetitions). Note that parameter estimation is carried out170

by maximizing a Gompertz likelihood as we deal with individual data (for aggregated data,171

as it is in the case of human mortality, we maximize a Poisson likelihood, see section 1 and172

eq. 2).173

Figure 4 illustrates the distortions in rat mortality measures when type-II censoring is174

addressed in a life-table style. Depending on the proportion of censored individuals (from175

0% to 70%), life expectancy and the modal age at death can be mismatched on average by176

up to 100 days, life disparity and entropy can be calculated as much as twice as low, while177

the Gini coefficient can be off by 10%.178
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Figure 4: Life-table (red) vs ΓGM model-based (blue) mortality measures for a rat population

of size 200 (1000 repetitions, simulation based on the estimates by Lenart and Missov (2014)

for the dataset in Anisimov et al. (1989)). The red dashed line in each graph denotes the

true value of the measure.

4 Discussion179

Mortality measures calculated from conventional life tables, i.e., constructed on the basis of180

raw death counts, might be misleading because of the way right censoring is addressed: in181

the last open-end age group, life tables assume a constant hazard equal to the death rate182

in the beginning of the interval. The latter, constructed as the ratio of raw death counts183

over exposure, can be higher or lower than the “true” hazard. If it is lower, remaining life184

expectancy at any preceding age will be overestimated. If, on the contrary, the death rate at185

the starting age of the last interval exceeds the “true” force of mortality, then remaining life186

expectancy will be overestimated (underestimated) if area A is smaller (bigger) than area B187
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(see Figure 5)3.188

The Human Mortality Database (HMD, 2015) smooths mortality rates at the oldest ages.189

If statistical offices provide censored (at age xC) data, age-specific mortality reconstruction190

from xC onwards is performed by fitting a Kannisto model to the last 20 ages with avail-191

able age-specific death counts and extrapolating the estimated model to subsequent ages192

(Wilmoth et al., 2007). If exact death counts are available for every single age, the HMD193

smooths the death counts after the first age xT , at which the number of deaths is lower than194

100, by fitting a Kannisto model from age xT to age 110 (Wilmoth et al., 2007). The hazard195

of death at age x in a Kannisto model is given by196

µK(x) =
aeb(x−x0)

1 + aeb(x−x0)
, (8)

where x0 is the starting age of analysis, while ln a and b represent the intercept and the197

slope, respectively, of the (assumed) logit(µK(x)) linear increase. The Kannisto hazard198

has an S-shaped (logistic) pattern. Fitting a Kannisto or a gamma-Gompertz-Makeham199

3If the death rate at the censoring age lies on or below the ΓGM curve, the area under the resulting

hazard µ(x) will be less than the area under the ΓGM hazard (after the age at censoring, the latter increases

while the former stays constant). As the survival function is defined in terms of the hazard as

s(x) = exp

−
x∫

0

µ(t)dt

 ,

s(x) will be overestimated (in comparison to the ΓGM hazard). Consequently, all mortality measures that

are calculated by integrating s(x) or s2(x) (life expectancy, life disparity, entropy, and the Gini coefficient)

will be overestimated.

If the death rate at the age at censoring lies above the ΓGM hazard then the sign of the bias depends

on the difference between areas A and B: if A (the area we “gain”) is larger than B (the area we “lose”

as a result of censoring), µ(x) will be overestimated, whereas s(x) and the four mortality measures will be

underestimated, and vice versa.

The modal age at death M is not a function of s(x). The bias in M is always directed downwards, i.e.

M can only be underestimated, and this occurs if censoring takes place at an age that precedes the true M .

In this case, in the absence of a model, we just choose (roughly) the age at censoring as the modal age at

death.
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model to adult human mortality (until age 110) is equivalent as the two models differ only200

asymptotically – µK(x) tends to 1, while the ΓGM allows more flexibility about the plateau:201

µ(x) −−−→
x→∞

b/γ+c. Human mortality measures calculated from the Kannisto-adjusted HMD202

life tables are almost identical to the ΓGM measures even if the two models are fitted over203

different age ranges (as in Figure 5). On the other hand, mortality measures calculated204

from life tables based on raw mortality data, e.g., for countries that are not present in the205

HMD and rely on standard life-table methodology without applying any mortality model,206

can be substantially distorted. This can also be the case for human mortality data by cause207

of death, for hunter-gatherer populations or non-human species, where the proportion of208

censored individuals can be high.209

4.1 Mortality Measures for Countries with Lower Data Quality210

The Human Life-Table Database (HLTD, 2015) contains life tables for countries with lower211

mortality-data quality (for detailed selection criteria to HMD and HLTD see Shkolnikov212

et al., 2007; Wilmoth et al., 2007). Reported official mortality measures for HLTD coun-213

tries are based on these datasets. However, apart from other problems HLTD data may214

contain (Shkolnikov et al., 2007), the last age group in many life tables, for historical and215

contemporary populations, contains a substantial proportion of the population (see Table 1).216

This questions the adequacy of life-table algebra to calculate mortality measures for these217

countries.218
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Country Last Year(s) Cens. Age % Censored (Male) % Censored (Female)

Bangladesh 2007 85 16.18 16.59

Brazil 2008 80 34.16 51.47

Botswana 2006 80 3.05 17.28

Colombia 2005 80 46.74 61.83

Dominican Rep. 2002 80 34.76 46.64

India 1995-1999 70 45.83 53.19

Iran 2004 85 14.93 13.47

Korea Rep. 1995 85 14.14 33.69

Sri Lanka 2000-2002 92 5.57 11.70

Malta 2007 85 30.32 48.18

Mongolia 1996-2000 70 40.94 53.22

Panama 2000-2005 80 45.19 57.41

219

Table 1: A list of HLTD countries whose last available life table (after 1990) has at least

10% censored individuals for at least one of the genders (Data source: HLTD, 2015).220

There are alternative ways of “closing” the life table, apart from the one described in221

(Preston et al., 2001). Horiuchi and Coale (1982) suggest a constant hazard in the last age222

group, as well, but adjusted for the growth rate of the this group (see Horiuchi and Coale,223

1982: eq.7, p.322). Another option (used in HLTD) is to calculate life expectancy at the cen-224

soring age ω by a “table of correspondence between eω and e0” (Shkolnikov et al., 2007)4 and225

then adjust the (constant) death rate in the open-end interval. No matter how the constant226

hazard in the last age group is determined, aggregate mortality measures will be distorted,227

unless the level of mortality is chosen in such a way that area A equals area B (Figure 5).228

Another alternative (that does not assume constant mortality) is to redistribute the deaths229

in the open-end interval uniformly up to a fixed maximal age. In this case mortality mea-230

sures are stable with respect to the choice of the age at censoring, but their accuracy is not231

4For the age at censoring, we use here the notation in Shkolnikov et al. (2007) instead of xC .
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satisfactory, especially when the chosen maximal age increases. In the following section we232

demonstrate for 2007 Brazilian mortality data that all these methods for “closing” the life233

table can lead to erroneous conclusions about the magnitude of life expectancy.234

4.2 Example: 2007 Gender-Specific Life Tables for Brazil235

Contemporary Brazilian life tables are characterized by a large proportion of censored in-236

dividuals. The 80+ open-end age group in 2007 contains over one third (34.16%) of male237

and over one half (50.89%) of female deaths. To estimate a ΓGM model, age-specific popu-238

lation (or death) counts must be available5. However, such data are missing for a number of239

HLTD populations which restricts the application of ΓGM-smoothing to the corresponding240

life tables.241

Tables 2 and 3 present remaining life expectancy for 2007 Brazilian females and males,242

respectively, assuming for the last age interval (i) a constant hazard (according to Preston243

et al. (2001) and Shkolnikov et al. (2007)), (ii) a uniform distribution of deaths with maximal244

ages 100, 115, and 120, or (iii) a ΓGM model. When the age at censoring decreases (and the245

respective share of censored observation increases), remaining life expectancy e25 is stable246

in cases (ii) and (iii), while e25 according to (i) becomes unrealistically high. The ΓGM e25247

increases by about 3 years when more than 2/3 of the population is censored, and e25 for248

uniformly distributed deaths in the last interval tends to be most realistic if the maximal249

age is 100. This is to be observed for life expectancy at birth, too (Tables 4 and 5). Note250

that life expectancy at birth reported by the Brazilian Institute of Geography and Statistics251

(IBGE) exceeds the ΓGM one by almost 3 years for females (76.44 vs 73.71) as around half252

of the deaths are censored, while for males, where about 1/3 of the individuals are censored,253

the two values are very close (68.82 vs 68.45).254

5Brazilian age-specific population counts are publicly available at

http://www.ibge.gov.br/english/estatistica/populacao/contagem2007/default.shtm
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age % censored IBGE HLTD U100 U115 U120 ΓGM

80 50.89 53.83 51.88 54.16 58.12 59.43 51.04

75 63.75 63.30 63.30 54.22 59.17 60.80 53.74

70 73.60 73.99 73.99 53.90 59.60 61.51 54.47

65 80.73 91.69 91.69 53.11 59.38 61.46 57.39

255

Table 2: Remaining life expectancy at age 25 for 2007 Brazilian females calculated by assum-

ing a constant hazard in the last age group (column 3: according to Preston et al. (2001);

column 4: using HLTD tables of correspondence by Shkolnikov et al. (2007), a uniform dis-

tribution of deaths after the censoring age (column 5: to a maximal age of 100, column 6:

to a maximal age of 115, column 7: to a maximal age of 120), and a ΓGM model (column

8).256

age % censored IBGE HLTD U100 U115 U120 ΓGM

80 34.16 47.57 46.33 48.14 50.88 51.77 47.25

75 46.77 51.42 51.42 48.64 52.36 53.62 47.34

70 58.01 56.25 56.25 48.94 53.58 55.12 48.58

65 67.02 64.86 64.86 48.89 54.24 55.99 51.48

257

Table 3: Remaining life expectancy at age 25 for 2007 Brazilian males calculated by assuming

a constant hazard in the last age group (column 3: according to Preston et al. (2001); column

4: using HLTD tables of correspondence by Shkolnikov et al. (2007)), a uniform distribution

of deaths after the censoring age (column 5: to a maximal age of 100, column 6: to a maximal

age of 115, column 7: to a maximal age of 120), and a ΓGM model (column 8).258

age % censored IBGE HLTD U100 U115 U120 ΓGM

80 50.89 76.44 74.55 76.75 80.59 81.85 73.71

75 63.75 74.03 85.60 76.82 81.61 83.18 76.32

70 73.60 - 95.95 76.50 82.02 83.87 77.03

65 80.73 - 113.07 75.74 81.80 83.82 79.86

259
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Table 4: Life expectancy at birth for 2007 Brazilian females calculated by assuming a con-

stant hazard in the last age group (column 3: according to Preston et al. (2001); column 4:

using HLTD tables of correspondence by Shkolnikov et al. (2007)), a uniform distribution of

deaths after the censoring age (column 5: to a maximal age of 100, column 6: to a maximal

age of 115, column 7: to a maximal age of 120), and a ΓGM model (column 8).260

age % censored IBGE HLTD U100 U115 U120 ΓGM

80 34.16 68.82 67.65 69.36 71.94 72.77 68.45

75 46.77 72.44 67.30 69.83 73.33 74.51 68.53

70 58.01 77.00 -t 70.11 74.48 75.93 69.70

65 67.02 85.10 - 70.06 75.10 76.75 72.43

261

Table 5: Life expectancy at birth for 2007 Brazilian males calculated by assuming a constant

hazard in the last age group (column 3: according to Preston et al. (2001); column 4: using

HLTD tables of correspondence by Shkolnikov et al. (2007)), a uniform distribution of deaths

after the censoring age (column 5: to a maximal age of 100, column 6: to a maximal age of

115, column 7: to a maximal age of 120), and a ΓGM model (column 8).262

The adjustment by Horiuchi and Coale (1982) affects just remaining life expectancy at263

the censoring age. Tables 6 and 7 compare the latter at censoring ages 65, 70, 75, and 80 for264

2007 Brazilian females and females, respectively. For four different growth rates of the last265

age group (0.5%, 1%, 2%, and 5%) the Horiuchi and Coale adjustment does not remove the266

bias associated with the constant-hazard assumption in the open-end interval. As a result,267

it is only the ΓGM that provides coherent remaining life expectancy values no matter how268

low the censoring age is or, what is equivalent, how large the proportion of censored deaths269

is.270
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age % censored IBGE HLTD HC ΓGM

0.005 0.01 0.02 0.05

80 50.89 9.87 6.16 9.76 9.64 9.42 8.78 2.60

75 63.75 26.76 26.38 25.53 24.35 22.14 16.66 8.08

70 73.60 41.92 41.92 38.36 35.10 29.39 17.24 12.36

65 80.73 64.22 64.22 54.65 46.51 33.67 12.78 19.27

271

Table 6: Remaining life expectancy at the censoring age (column 1) for 2007 Brazilian females

calculated by assuming a constant hazard in the last age group (column 3: according to

Preston et al. (2001); column 4: using HLTD tables of correspondence by Shkolnikov et al.

(2007); columns 5-8: using the adjustment by Horiuchi and Coale (1982) for growth rates of

0.005, 0.01, 0.02, and 0.05), and a ΓGM model (column 9).272

age % censored IBGE HLTD HC ΓGM

0.005 0.01 0.02 0.05

80 34.16 8.91 5.49 8.82 8.73 8.55 8.05 2.91

75 46.77 18.59 18.59 18.07 17.57 16.59 13.99 5.16

70 58.01 27.36 27.36 26.06 24.82 22.51 16.78 9.19

65 67.02 40.45 40.45 37.18 34.16 28.85 17.38 15.42

273

Table 7: Remaining life expectancy at the censoring age (column 1) for 2007 Brazilian males

calculated by assuming a constant hazard in the last age group (column 3: according to

Preston et al. (2001); column 4: using HLTD tables of correspondence by Shkolnikov et al.

(2007); columns 5-8: using the adjustment by Horiuchi and Coale (1982) for growth rates of

0.005, 0.01, 0.02, and 0.05), and a ΓGM model (column 9).274

5 Conclusion275

The life-table distribution of deaths is characterized by a constant hazard for the last open-276

end age interval. This is not a typical approach for treating censoring in survival analysis.277
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Instead we propose fitting a parametric model (when a parametric model provides a sat-278

isfactory fit) by accounting for the censoring mechanism and using model-based mortality279

measures instead of their widely used life-table equivalents because the former are less sensi-280

tive to the age at censoring. Current life tables for many countries contain a large proportion281

of censored individuals, and we suggest calculating the corresponding mortality measures, es-282

pecially life expectancy, by fitting a gamma-Gompertz-Makeham model because it captures283

well adult mortality, as well as addresses censoring accurately.284
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Figure 5: Log-mortality of Swedish males in 1970: raw data (circles), HMD data – raw data

until age 95 and Kannisto-smoothed data from age 96 onwards (squares), and ΓGM fit (solid

line). The three dashed horizontal lines (corresponding to censoring ages 94, 96, and 100)

reflect the assumption that the hazard in the last open-age group in a life table is constant.

If the observed death rate at the age at censoring overestimates the true force of mortality,

remaining life expectancy will be overestimated/underestimated if the differences between

areas A and B is negative/positive. If the observed death rate at the age at censoring

underestimates the true force of mortality, remaining life expectancy will be overestimated.
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