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Abstract

In practice, fertility and population data can be only available in age classes and calendar year classes, which
may have different levels of aggregation. Moreover, these coarse data can be recorded along a third dimension,
making their analysis more challenging. Data aggregation process may, however, hinder the visualization of the
underlying distribution that follows the data. In this paper, we propose the use of the penalized composite
link model to estimate the latent trend behind these coarsely grouped data. This model only assumes that the
underlying distribution is smooth, making it suitable for other applications in which disaggregation is required.
We illustrate our proposal using a Canadian fertility dataset, which is recorded by age of the mother, calendar
year, and birth order.
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1 Introduction

Coarsely grouped data often appear in areas such as demography, epidemiology, and public health. Some examples
of grouped data are age group-specific disease incidence rates, abridged life tables, and bivariate histograms with
wide bins. A more complex situation occurs when data are registered by age groups, calendar year groups, and
another covariate that can be aggregated or not. In this case, data structure can be viewed as a three-dimensional
(coarse) array.

In general, data aggregation is done to protect the privacy of patients, to facilitate compact presentation, or to
make it comparable with other datasets. Another reasons can be derived from the lack of good vital registration
systems or regular population censuses in some countries. This data aggregation process may, however, hinder the
visualization of the underlying distribution behind these data. In this paper, we propose the use of the penalized
composite link model (PCLM, Eilers, 2007) to estimate such latent distribution, from coarsely grouped data, at
a finer resolution. We assume here the underlying distribution at the fine resolution is smooth. The flexibility of
the model is given by the use of B-spline bases, together with a penalty on the regression coefficients, following
the P-spline methodology (Eilers and Marx, 1996). We address here the case when grouped data can be arranged
as a three-dimensional array (for applications in the one- and two-dimensional cases, see Lambert and Eilers,
2009; Rizzi et al., 2015; Lambert, 2011; Ayma et al., 2015). We illustrate our approach using a Canadian fertility
dataset, registered by ages, years, and birth order.

2 The 3-d penalized composite link model

2.1 The model

Let y = vec(Y) be the vector of observed aggregated counts, where Y denotes a three-dimensional array of
dimension n1 × n2 × n3. Assume that y follows a Poisson distribution with mean vector µ ∈ Rn1n2n3 . These
counts can be seen as indirect observations of a latent process that we want to estimate. The PCLM approach
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of Eilers (2007) offers an elegant way to do this, by considering µ as composed of latent expectations. Denoting
xd ∈ Rmd , for d = 1, 2, 3, as the covariates that determine the dimension of the latent process, the Poisson PCLM
is given by:

µ = Cγ = C(ef ∗ exp(Bθ)), (1)

where γ ∈ Rm1m2m3 represents the mean vector of the latent process at fine resolution, C is the composition
matrix that describes how these latent expectations are combined to yield µ, B is the full regression matrix
constructed from the covariates xd, θ ∈ Rc1c2c3 is a vector of regression coefficients, and ef is the vector of
exposures at the fine resolution (which allows to analyse rates instead of counts). Under this framework, the
matrices C and B in Eq. (1) can be expressed as C = C1 ⊗C2 ⊗C3 and B = B1 ⊗B2 ⊗B3, respectively, where
Cd is the marginal composition matrix (of dimension nd×md) and Bd = B(xd) is the marginal B-spline basis (of
dimension md × cd), for d = 1, 2, 3. Smoothness is achieved by imposing a penalty on the regression coefficients
in the form θ′Pθ, where P is the penalty matrix of dimension c1c2c3 × c1c2c3. Here we choose an anisotropic
penalization, i.e., a different amount of smoothing for each xd (d = 1, 2, 3). Thus the penalty matrix is given by:

P = λ1P1 ⊗ Ic2 ⊗ Ic3 + λ2Ic1 ⊗P2 ⊗ Ic3 + λ3Ic1 ⊗ Ic2 ⊗P3,

where Ik denotes an identity matrix of dimension k× k, λd is a smoothing parameter that controls the amount of
smoothing along the covariate xd, and Pd = D′dDd is the marginal penalty matrix based on the matrix Dd that
computes qd-th differences, i.e, ∆qdθ = Ddθ (d = 1, 2, 3).

2.2 Parameter estimation

For fixed values of λd, d = 1, 2, 3, the estimation the regression coefficients θ in Eq. (1) are obtained by iteratively
solving:

(B̆′W̃B̆ + P)θ̂ = B̆′(y − µ̃+ W̃B̆θ̃), (2)

where W̃ = diag(µ̃) and B̆ = W̃−1CΓ̃B, with Γ̃ = diag(γ̃). Here a tilde, as in θ̃, indicates the current
approximation to the solution, and θ̂ denotes the updated estimate of θ. The expression in Eq. (2) corresponds
to a modified version of the iteratively reweighted least squares algorithm, as it was shown previously by Eilers
(2007).

The PCLM fit requires an optimal selection of the smoothing parameters λd (for d = 1, 2, 3). We choose to
minimize the Akaike Information Criterion (AIC), which combines the deviance and effective dimension of the
model as follows:

AIC = Dev(y, µ̂) + 2ED = 2
(
y′ (log(y)− log(µ̂))− 1′n1n2n3

(y − µ̂)
)

+ 2ED,

where ED = trace((B̆′ŴB̆ + P)−1B̆ŴB̆).
A simple algorithm for the search of optimal smoothing parameters is to consider a three-dimensional array of

log(λd) values (d = 1, 2, 3) and choose the one that minimizes AIC. Since grouped data have an array structure,
the parameter estimation procedure can be speed up by considering the so-called GLAM methods (Currie et al.,
2006) in the computations.

3 An illustration

To illustrate our proposal, we use a Canadian fertility dataset (downloaded from http://www.humanfertility.

org/) that consists of birth counts and age-specific fertility rates recorded by age (which varies from 15 to 54
years), calendar year (from 1944 to 2009), and birth order (from 1st to 4th). The female population exposure can
be then derived using these data. To show how our methodology works, we have grouped the birth counts and
the exposures into 5-year age classes, and calendar year classes of different lengths (starting with four classes of
length 10, followed by five classes of length 5). Figures 1(a), 1(c), 1(e), and 1(g) show the fertility rates resulting
from this aggregation for the 1st, 2nd, 3rd, and 4th birth order, respectively.

Now we apply the 3-d PCLM approach to the previous grouped counts, in order to obtain detailed trends
at a fine resolution. To do that, let us consider the female population exposure at the fine resolution as ef in
Eq. (1) (if the exposure vector is only available at an aggregated level, we can apply the 3-d PCLM approach
to disaggregate them, and then use the resulting estimates as ef). To set up the 3-d PCLM formulation, we use
x1 = (15, ..., 54)′ (for ages), x2 = (1945, ..., 2009)′ (for years), and x3 = (1, ..., 4)′ (for birth orders) as covariates
at the fine resolution. We choose 10, 16, and 3 internal equally-spaced knots for the marginal cubic B-spline bases
Bd, respectively, and second order penalties, i.e., qd = 2, for d = 1, 2, 3. About the composition matrix C in
Eq. (1), since we have not aggregated the data by birth order, the marginal composition matrix C3 is equal to
I4. The dimensions of the other marginal composition matrices C1 and C2 are 8× 40 and 9× 65, respectively.
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Figures 1(b), 1(d), 1(f), and 1(h) show the resulting PCLM estimates for the fertility rates along ages and
years, for the 1st, 2nd, 3rd, and 4th birth order, respectively. We observe more detailed impressions of the
Canadian fertility, delineating clearly lower and higher fertility rates. Figure 2(a) shows the estimated fertility
rates using the 3-d PCLM approach at age 36, for 1st, 2nd, 3rd, and 4th birth orders. We observe the patterns
that the solid curves exhibit follow closely the true distribution of the fertility rates (dot points), except perhaps
in the left extremes of some curves where we have less information (recall the aggregation procedure previously
done). Figure 2(b) shows the estimated fertility rates using the 3-d PCLM approach for the year 1990. In this
case, we have calculated the true and the estimated total fertility rates, obtaining similar results. Note here that,
in the case of the 1st birth order, the red curve departs slightly from the true distribution from ages 15 to 27.
This can be improved if we incorporate more information in the left part of the curve, i.e., fertility information
below 15 years old.
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(b) Estimated fertility rates for 1st birth
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(c) Aggregated fertility rates for 2nd birth
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(d) Estimated fertility rates for 2nd birth
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(e) Aggregated fertility rates for 3rd birth
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(f) Estimated fertility rates for 3rd birth
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(g) Aggregated fertility rates for 4th birth
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(h) Estimated fertility rates for 4th birth
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Figure 1: Grouped Canadian fertility rates for 1st, 2nd, 3rd, and 4th birth orders (left side) and estimated fertility
rates using the 3-d PCLM approach (right side).

4 Concluding remarks

In this paper, the penalized composite link model for 3-d array (coarse) data was developed and applied to the
disaggregation of fertility rates. The PCLM provides a flexible tool for epidemiological studies, when the aim is
to obtain estimations of vital rates at a fine resolution. We used the statistical software R (R Core Team, 2015)
for data analysis with the 3-d PCLM approach. Our plan is to make accessible efficient R codes for the use of our
proposal.

The estimation procedure presented in Section 2.2 is not so computational efficient, in the sense that we have
to search estimates for the smoothing parameters on a fine array of values. A way to improve the computational
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Figure 2: True (dot points) and estimated (solid lines) fertility rates (a) at age 36; and (b) for year 1990.

speed is to reformulate the model in Eq. (1) as a mixed model (in fact, as a generalized linear mixed model). In
this new context, the smoothing parameters are seen as ratios of variance components, i.e., λd = φ/τ2d (d = 1, 2, 3)
with φ = 1 (in the Poisson case). Thus, we can use an adaptation of the SAP (separation of anisotropic penalties,
Rodŕıguez-Álvarez et al., 2015) algorithm in the PCLM framework to estimate the parameters of the model.
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