Estimating life-tables for very small areas in a national context:

An analysis of Israel Statistical Areas

Jon Anson Department of Social Work Ben-Gurion University of the Negev 84105 Beer Sheva, Israel anson@bgu.ac.il

EPC Mainz, September 2016

Rationale

- As mortality reaches minimal levels, important to distinguish young from middle-age mortality
- Mortality varies by age and sex, so just dividing number of deaths by population can give a very distorted picture of the risk of dying
- Standardised rates, which control for the age distribution, are good for comparing the average level of risk, cannot distinguish differences at specific ages
- Life tables look at mortality by age, but fine detail requires a large population and large number of deaths for reliable estimation
 - Question:
 - can we estimate local level life tables for very small populations?
 - ▶ and if we can, how much do we learn?

Data

1125 Statistical Areas (SA) in 189 Israeli municipalities

(includes Israeli settlements in OT, not include Palestinian populations in E. Jerusalem, Golan heights) Minimum: 1,000 each, males and females ▶ Range: 2,000 - 29,000, median = 3,645 Population Data: Census 1995 Social Data: Census 1995 Mortality data: deaths by sex and 5-year age groups, 0 - 75+, 1993 to 1997 Deaths / SA, 3 - 429, median = 114 Empty cells: 15403 / 36000 = 43% (1 Population cell = 0, set to 0.5)

Population Groups

▶ 3 Population Groups: ▶ Palestinian - Arab: SA's with at least 50 % of population Arab. 106 SA's ► Total Population: 654,308 ► Total deaths: 10,879, CDR = 3.32 Ultra Orthodox: SA's with predominantly ultraorthodox population (voting patterns). 66 SA's ► Total Population: 275,461 ► Total deaths: 5,594, CDR = 4.06 ► Jewish population: All the rest, 953 SA's ► Total Population: 3,550,339 ► Total deaths: 123,309, CDR = 6.95

Group Mortality Curves

Age

Males

Age

Local mortality curves (raw) Problematic!

2250 mortality curves,

- 43% empty cells replace with age / sex / group specific rates
- Anticipate: at age 5 to 10, differential negative
 - > 2% of female, 3% of male values positive
- Anticipate: from age 15-20 and up, differentials positive
 - ▶ 19% female, 25% male values not positive
- Anticipate: No (or very few) life expectancies more than 10 years above or below group life expectancy
 - ▶ 3 female, 0 male above; 6 female, 8 male below
 - ▶ No LE > 95, 4 (2M, 2F) < 60

Errors in rates, cancel out in life expectancies?
Note: LE's calculated by integration of mortality rates, set max = 0.5 at age 110

Solution

- Age sex specific mortality rate as function of:
 - Age
 - ► Sex
 - ► Group
 - Social conditions
 - Local peculiarities

Multilevel model (Poisson):

- Deaths = f((sex / group) * social conditions [FIXED (Nested)]
- + sex/group * Age [RANDOM (Shape)]
- + social conditions * Age [RANDOM (Shape)]
- + statistical area [RANDOM]
 - Offset = log(population)
 - Weight by number of Deaths in each cell

Social Conditions (1)

- 1. Standard of Living Scale (SOL)
 - Household goods average number in HH of:
 - video, microwave, dishwasher, computer, AC, dryer, cars)
 - Mean HH income per person (income/persons^0.5)
 - Proportion aged 25-60 with HS matriculation (logit)
 - Proportion aged 25-60 working (logit)
 - Proportion of those working in professional or managerial positions (logit)
- Scale = sum(z-scores), α = 0.937, λ = 4.0 (80%)
 Mean = 0, sd = 0.894

Social Conditions (2)

- 1. Traditional family structure (TFS)
 - Average N children ever born, women aged 35-60
 - Average household size
 - Child-women ratio (current fertility) (logged)
 - Proportion households > 6 persons (logit)
 - I_m (proportion married) (logged)
 - SMAM (average age at marriage)
- ► Scale = sum(z-scores), $\alpha = 0.911$, $\lambda = 4.4$ (70%)
- Mean = 0, sd = 0.835

Social Conditions, by Group

Standard of Living

Traditional Family Structure

Population Group

Population Group

Reproducing e₀ (raw) by social conditions

Standard of Living

Traditional Family Structure

SOL Scale

TFS Scale

Multilevel models, reproducing number of deaths, by age and sex, in each SA

Fixed	Model 1: No Social Conditions		Model 2: Nested Curves		Model 2: Shape Adjusted	
Variable	e ^b		eb		eb	
	Males	Females	Males	Females	Males	
Intercept	0.0192*	0.0263*	0.0195*	0.0267*	0.0196*	0.02638
Group: Arab	0.863	0.901	0.773*	0.779*	0.762*	0.809*
Group: Ultra	0.939	0.843*	0.882	0.773*	0.904	0.822*
SOL			0.897*	0.875*	0.851*	0.793*
TFS			0.966*	0.967*	0.925*	0.863

Multilevel models, reproducing number of deaths, by age and sex, in each SA

Random	Model 1: No Social Conditions		Model 2: Nested Curves		Model 2: Shape Adjusted	
Source	Variance		Variance		Variance	
	Males	Females	Males	Females	Males	Females
Age	1.54	1.61	1.54	1.61	1.55	1.61
Age:Arab	0.194	0.0880	0.193	0.0884	0.118	0.0343
Age:Ultra	0.0269	0.0300	0.0272	0.0302	0.0663	0.0613
Age:SOL					0.00282	0.0115
Age:TFS					0.0209	0.0178
SA	0.0807		0.0740		0.0740	
Δ Deviance (df)	785383		493(4)		4923 (34)	

Random mortality variations:

Age

Age

Random variations: SOL and TFS by Age and Sex

Standard of Living

Traditional Family Structure

Quality of fit

- 2250 mortality curves,
- 36000 cells (age * sex)
- No empty cells
- At age 5 to 10, 2 differentials positive
- from age 15-20 and up 8.1% female,
 6.1% male differentials negative
- No life expectancies more than 10 years above or below group life expectancy
- ▶ No LE > 95, 4 (2M, 2F) < 60
- Fixed (most) errors in rates, life expectancies credible

Predicted life expectancies

AFPT by SOL and TFS Partial Residuals

Standard of Living

Traditional Family Structure

SOL Scale

TFS Scale

Summary

- Life tables contain information on the distribution of mortality, inaccessible from summary measures, e.g. SMR
- Small area data insufficient to compute reliable life tables: too much missing data
- Pool data from small areas, together with social information, to estimate local age-sex specific mortality rates

Conclusions

- Model produces credible, local-area mortality curves
- Favourable, Salutogenetic conditions, reduce mortality at all ages, stretch out period of minimum rates, delay senescent increase, AFPT
- Population groups have different shapes to mortality curves, largely as result of conditional conditions
- Traditional family structure important part of social conditions, not just standard of living

