Estimating life-tables for very small areas in a national context:

An analysis of Israel Statistical Areas

Jon Anson
Department of Social Work Ben-Gurion University of the Negev
84105 Beer Sheva, Israel anson@bgu.ac.il

EPC Mainz, September 2016

Rationale

- As mortality reaches minimal levels, important to distinguish young from middle-age mortality
- Mortality varies by age and sex, so just dividing number of deaths by population can give a very distorted picture of the risk of dying
- Standardised rates, which control for the age distribution, are good for comparing the average level of risk, cannot distinguish differences at specific ages
- Life tables look at mortality by age, but fine detail requires a large population and large number of deaths for reliable estimation
- Question:
- can we estimate local level life tables for very small populations?
- and if we can, how much do we learn?

Data

- 1125 Statistical Areas (SA) in 189 Israeli municipalities
(includes Israeli settlements in OT, not include Palestinian populations in E. Jerusalem, Golan heights) - Minimum: 1,000 each, males and females
- Range: 2,000-29,000, median $=3,645$
- Population Data: Census 1995
- Social Data: Census 1995
- Mortality data: deaths by sex and 5-year age groups, 0 - 75+, 1993 to 1997
- Deaths / SA, 3-429, median = 114

Empty cells: $15403 / 36000=43 \%$
(1 Population cell = 0, set to 0.5)

Population Groups

- 3 Population Groups:
- Palestinian - Arab: SA's with at least 50 \% of population Arab. 106 SA's
-Total Population: 654,308
- Total deaths: 10,879, CDR = 3.32
-Ultra Orthodox: SA's with predominantly ultraorthodox population (voting patterns). 66 SA's
-Total Population: 275,461
- Total deaths: 5,594, CDR = 4.06
- Jewish population: All the rest, 953 SA's
- Total Population: 3,550,339
- Total deaths: 123,309, CDR $=6.95$

Group Mortality Curves

Males

Females

Local mortality curves (raw) Problematic!

- 2250 mortality curves,
- 43\% empty cells - replace with age / sex / group specific rates
- Anticipate: at age 5 to 10, differential negative
- 2% of female, 3% of male values positive
- Anticipate: from age 15-20 and up, differentials positive
- 19\% female, 25% male values not positive
- Anticipate: No (or very few) life expectancies more than 10 years above or below group life expectancy
- 3 female, 0 male above; 6 female, 8 male below
- No LE > 95, 4 (2M, 2F) < 60
- Errors in rates, cancel out in life expectancies?

Note: LE's calculated by integration of mortality rates, set max $=0.5$ at age 110

- Age - sex specific mortality rate as function of:
- Age
- Sex
- Group
- Social conditions
- Local peculiarities
- Multilevel model (Poisson):

Deaths = f((sex / group) * social conditions [FIXED (Nested)]

- + sex/group * Age [RANDOM (Shape)]
- + social conditions * Age [RANDOM (Shape)]
+ statistical area [RANDOM]
- Offset $=\log$ (population)
- Weight by number of Deaths in each cell

Social Conditions (1)

1. Standard of Living Scale (SOL)

- Household goods average number in HH of:
- video, microwave, dishwasher, computer, AC, dryer, cars)
- Mean HH income per person (income/persons^${ }^{\wedge} 0.5$)
- Proportion aged $25-60$ with HS matriculation (logit)
- Proportion aged 25-60 working (logit)
- Proportion of those working in professional or managerial positions (logit)
Scale $=\operatorname{sum}(z$-scores), $\alpha=0.937, \lambda=4.0(80 \%)$
Mean $=0$, sd $=0.894$

Social Conditions (2)

1. Traditional family structure (TFS)

- Average N children ever born, women aged 35-60
- Average household size
- Child-women ratio (current fertility) (logged)
- Proportion households > 6 persons (logit)
- I_{m} (proportion married) (logged)
- SMAM (average age at marriage)
- Scale $=\operatorname{sum}(z$-scores), $\alpha=0.911, \lambda=4.4$ (70\%)

Mean $=0$, sd $=0.835$

Social Conditions, by Group

Standard of Living

Traditional Family Structure

Reproducing e_{0} (raw) by social conditions

Standard of Living

Traditional Family Structure

Multilevel models, reproducing number of
deaths, by age and sex, in each SA

| Fixed | Model 1: No Social
 Conditions | Model 2: Nested
 Curves | | | Model 2: Shape
 Adjusted |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |

Ultra

SOL	0.897^{*}	0.875^{*}	0.851^{*}	0.793^{*}
TFS	0.966^{*}	0.967^{*}	0.925^{*}	0.863

Multilevel models, reproducing number of deaths, by age and sex, in each SA

Random	Model 1: No Social Conditions		Model 2: Nested Curves		Model 2: Shape Adjusted	
Source	Variance		Variance		Variance	
	Males	Females	Males	Females	Males	Females
Age	1.54	1.61	1.54	1.61	1.55	1.61
Age:Arab	0.194	0.0880	0.193	0.0884	0.118	0.0343
Age:Ultra	0.0269	0.0300	0.0272	0.0302	0.0663	0.0613
Age:SOL					0.00282	0.0115
Age:TFS					0.0209	0.0178
SA			0.07			

Δ Deviance (df)
785383
493(4)
4923 (34)

Random mortality variations:

 Femaesby Group by Age and Sex
Males

Random variations: SOL and TFS by Age and sex

Standard of Living

Traditional Family Structure

Quality of fit

- 2250 mortality curves,
- 36000 cells (age * sex)
- No empty cells
- At age 5 to 10, 2 differentials positive
- from age 15-20 and up 8.1% female, 6.1% male differentials negative
- No life expectancies more than 10 years above or below group life expectancy
- No LE > 95, 4 (2M, 2F) < 60
- Fixed (most) errors in rates, life expectancies credible

Predicted life expectancies

AFPT by SOL and TFS
 Partial Residuals

Standard of Living

Summary

- Life tables contain information on the distribution of mortality, inaccessible from summary measures, e.g. SMR
- Small area data insufficient to compute reliable life tables: too much missing data
- Pool data from small areas, together with social information, to estimate local age-sex specific mortality rates

Conclusions

- Model produces credible, local-area mortality curves
- Favourable, Salutogenetic conditions, reduce mortality at all ages, stretch out period of minimum rates, delay senescent increase, AFPT
- Population groups have different shapes to mortality curves, largely as result of conditional conditions
- Traditional family structure important part of social conditions, not just standard of living

Thank You

